Search results
Results from the WOW.Com Content Network
The magnetic field (marked B, indicated by red field lines) around wire carrying an electric current (marked I) Compass and wire apparatus showing Ørsted's experiment (video [1]) In electromagnetism , Ørsted's law , also spelled Oersted's law , is the physical law stating that an electric current induces a magnetic field .
Magnetism is the class of physical attributes that occur through a magnetic field, which allows objects to attract or repel each other.Because both electric currents and magnetic moments of elementary particles give rise to a magnetic field, magnetism is one of two aspects of electromagnetism.
The resultant voltage in that direction is proportional to the applied magnetic field. This is known as the Hall effect. The Hall effect is often used to measure the magnitude of a magnetic field. It is used as well to find the sign of the dominant charge carriers in materials such as semiconductors (negative electrons or positive holes).
The De Haas–Van Alphen effect, often abbreviated to DHVA, is a quantum mechanical effect in which the magnetic susceptibility of a pure metal crystal oscillates as the intensity of the magnetic field B is increased. It can be used to determine the Fermi surface of a material.
Magnetic field (green) induced by a current-carrying wire winding (red) in a magnetic circuit consisting of an iron core C forming a closed loop with two air gaps G in it. In an analogy to an electric circuit, the winding acts analogously to an electric battery, providing the magnetizing field , the core pieces act like wires, and the gaps G act like resistors.
The interaction is mediated by the magnetic field each current produces and forms the basis for the international definition of the ampere. [53] The electric motor exploits an important effect of electromagnetism: a current through a magnetic field experiences a force at right angles to both the field and current.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The rapid progress in the development of neodymium magnets, supplying magnetic fields as high as c. 1 T, allows simple and inexpensive experiments related to the Moses effect and its visualization. [ 3 ] [ 4 ] [ 5 ] The application of magnetic fields on the order of magnitude of 0.5-1 T results in the formation of the near-surface "well" with a ...