Search results
Results from the WOW.Com Content Network
The majority of the features of the 20S are still present, including keystroke programming support and the typical trigonometric, logarithmic and exponential functions found on most scientific calculators. However, the 21S has several features specifically to support statistical analysis:
Exponential functions with bases 2 and 1/2. In mathematics, the exponential function is the unique real function which maps zero to one and has a derivative equal to its value. . The exponential of a variable is denoted or , with the two notations used interchangeab
However, in general settings, the logarithm tends to be a multi-valued function. For example, the complex logarithm is the multi-valued inverse of the complex exponential function. Similarly, the discrete logarithm is the multi-valued inverse of the exponential function in finite groups; it has uses in public-key cryptography.
Exponential function: raises a fixed number to a variable power. Hyperbolic functions: formally similar to the trigonometric functions. Inverse hyperbolic functions: inverses of the hyperbolic functions, analogous to the inverse circular functions. Logarithms: the inverses of exponential functions; useful to solve equations involving exponentials.
The calculator described above was called "Model No. 1" . [6] Model 2 had scales on the inner cylinder for calculating logs and sines.The "Fuller-Bakewell" model 3 had two scales of angles printed on the inner cylinder to calculate cosine² and sine ⋅ cosine [note 1] for use by engineers and surveyors for tacheometry calculations.
A log amplifier, which may spell log as logarithmic or logarithm and which may abbreviate amplifier as amp or be termed as a converter, is an electronic amplifier that for some range of input voltage has an output voltage approximately proportional to the logarithm of the input:
The standard logistic function is the logistic function with parameters =, =, =, which yields = + = + = / / + /.In practice, due to the nature of the exponential function, it is often sufficient to compute the standard logistic function for over a small range of real numbers, such as a range contained in [−6, +6], as it quickly converges very close to its saturation values of 0 and 1.
Many properties of the real logarithm also apply to the logarithmic derivative, even when the function does not take values in the positive reals. For example, since the logarithm of a product is the sum of the logarithms of the factors, we have () ′ = ( + ) ′ = () ′ + () ′.