Search results
Results from the WOW.Com Content Network
The sample size is an important feature of any empirical study in which the goal is to make inferences about a population from a sample. In practice, the sample size used in a study is usually determined based on the cost, time, or convenience of collecting the data, and the need for it to offer sufficient statistical power. In complex studies ...
In statistical hypothesis testing, a two-sample test is a test performed on the data of two random samples, each independently obtained from a different given population. The purpose of the test is to determine whether the difference between these two populations is statistically significant .
Statistical hypothesis testing is a key technique of both frequentist inference and Bayesian inference, although the two types of inference have notable differences. Statistical hypothesis tests define a procedure that controls (fixes) the probability of incorrectly deciding that a default position ( null hypothesis ) is incorrect.
A permutation test involves two or more samples. The null hypothesis is that all samples come from the same distribution H 0 : F = G {\displaystyle H_{0}:F=G} . Under the null hypothesis , the distribution of the test statistic is obtained by calculating all possible values of the test statistic under possible rearrangements of the observed data.
In order to consider both the biases, we use a two-tailed test. Note that to do this we cannot simply double the one-tailed p-value unless the probability of the event is 1/2. This is because the binomial distribution becomes asymmetric as that probability deviates from 1/2. There are two methods to define the two-tailed p-value.
Statistical inference makes propositions about a population, using data drawn from the population with some form of sampling.Given a hypothesis about a population, for which we wish to draw inferences, statistical inference consists of (first) selecting a statistical model of the process that generates the data and (second) deducing propositions from the model.
For example, to calculate the similarity between: night nacht. We would find the set of bigrams in each word: {ni,ig,gh,ht} {na,ac,ch,ht} Each set has four elements, and the intersection of these two sets has only one element: ht. Inserting these numbers into the formula, we calculate, s = (2 · 1) / (4 + 4) = 0.25.
Although the 30 samples were all simulated under the null, one of the resulting p-values is small enough to produce a false rejection at the typical level 0.05 in the absence of correction. Multiple comparisons arise when a statistical analysis involves multiple simultaneous statistical tests, each of which has a potential to produce a "discovery".