enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Maximum and minimum - Wikipedia

    en.wikipedia.org/wiki/Maximum_and_minimum

    In mathematical analysis, the maximum and minimum [a] of a function are, respectively, the greatest and least value taken by the function. Known generically as extremum , [ b ] they may be defined either within a given range (the local or relative extrema) or on the entire domain (the global or absolute extrema) of a function.

  3. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    On the other hand, by definition, any nonzero vector that satisfies this condition is an eigenvector of A associated with λ. So, the set E is the union of the zero vector with the set of all eigenvectors of A associated with λ, and E equals the nullspace of (A − λI). E is called the eigenspace or characteristic space of A associated with λ.

  4. Proofs involving ordinary least squares - Wikipedia

    en.wikipedia.org/wiki/Proofs_involving_ordinary...

    The normal equations can be derived directly from a matrix representation of the problem as follows. The objective is to minimize = ‖ ‖ = () = +.Here () = has the dimension 1x1 (the number of columns of ), so it is a scalar and equal to its own transpose, hence = and the quantity to minimize becomes

  5. Arg max - Wikipedia

    en.wikipedia.org/wiki/Arg_max

    However, the normalised sinc function (blue) has arg min of {−1.43, 1.43}, approximately, because their global minima occur at x = ±1.43, even though the minimum value is the same. [ 1 ] In mathematics , the arguments of the maxima (abbreviated arg max or argmax ) and arguments of the minima (abbreviated arg min or argmin ) are the input ...

  6. Rayleigh quotient - Wikipedia

    en.wikipedia.org/wiki/Rayleigh_quotient

    As stated in the introduction, for any vector x, one has (,) [,], where , are respectively the smallest and largest eigenvalues of .This is immediate after observing that the Rayleigh quotient is a weighted average of eigenvalues of M: (,) = = = = where (,) is the -th eigenpair after orthonormalization and = is the th coordinate of x in the eigenbasis.

  7. Norm (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Norm_(mathematics)

    In general, the value of the norm is dependent on the spectrum of : For a vector with a Euclidean norm of one, the value of ‖ ‖ is bounded from below and above by the smallest and largest absolute eigenvalues of respectively, where the bounds are achieved if coincides with the corresponding (normalized) eigenvectors.

  8. Matrix calculus - Wikipedia

    en.wikipedia.org/wiki/Matrix_calculus

    In vector calculus the derivative of a vector y with respect to a scalar x is known as the tangent vector of the vector y, . Notice here that y : R 1 → R m . Example Simple examples of this include the velocity vector in Euclidean space , which is the tangent vector of the position vector (considered as a function of time).

  9. Minimal polynomial (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Minimal_polynomial_(linear...

    More generally, if φ satisfies a polynomial equation P(φ) = 0 where P factors into distinct linear factors over F, then it will be diagonalizable: its minimal polynomial is a divisor of P and therefore also factors into distinct linear factors. In particular one has: P = X k − 1: finite order endomorphisms of complex vector spaces are ...