Search results
Results from the WOW.Com Content Network
Relative bearing refers to the angle between the craft's forward direction and the location of another object. For example, an object relative bearing of 0 degrees would be immediately in front; an object relative bearing 180 degrees would be behind. [2] Bearings can be measured in mils, points, or degrees.
The relative velocity of an object B relative to an observer A, denoted (also or ), is the velocity vector of B measured in the rest frame of A. The relative speed v B ∣ A = ‖ v B ∣ A ‖ {\displaystyle v_{B\mid A}=\|\mathbf {v} _{B\mid A}\|} is the vector norm of the relative velocity.
Constant bearing, decreasing range (CBDR) is a term in navigation which means that some object, usually another ship viewed from the deck or bridge of one's own ship, is getting closer but maintaining the same absolute bearing. If this continues, the objects will collide. [1] [2] [3]
A bearing compass, is a nautical instrument used to determine the bearing of observed objects. (Bearing: angle formed by the north and the visual to a certain object in the sea or ashore). Used in navigation to determine the angle between the direction of an object and the magnetic north or, indirectly relative to another reference point.
The proper length of an object is the length of the object in the frame in which the object is at rest. Also, this contraction only affects the dimensions of the object which are parallel to the relative velocity between the object and observer. Thus, lengths perpendicular to the direction of motion are unaffected by length contraction.
Target angle is the relative bearing of the observing station from the vehicle being observed. It may be used to compute point-of-aim for a fire-control problem when vehicle range and speed can be estimated from other information.
It could be used to find the altitude of the Sun or determine local time. It let sunlight shine through a small orifice on the rim of the instrument. The point of light striking the far side of the instrument gave the altitude or tell time. All those mentioned were the traditional instruments used until well into the second half of the 20th ...
Proper acceleration at any speed is the physical acceleration experienced locally by an object. In spacetime it is a three-vector acceleration with respect to the object's instantaneously varying free-float frame. [13] Its magnitude α is the frame-invariant magnitude of that object's four-acceleration. Proper acceleration is also useful from ...