Search results
Results from the WOW.Com Content Network
Since 1982, STP has been defined as a temperature of 273.15 K (0 °C, 32 °F) and an absolute pressure of exactly 10 5 Pa (100 kPa, 1 bar). NIST uses a temperature of 20 °C (293.15 K, 68 °F) and an absolute pressure of 1 atm (14.696 psi, 101.325 kPa). [3] This standard is also called normal temperature and pressure (abbreviated as NTP).
Sodium triphosphate (STP), also sodium tripolyphosphate (STPP), or tripolyphosphate (TPP), [1]) is an inorganic compound with formula Na 5 P 3 O 10. It is the sodium salt of the polyphosphate penta-anion, which is the conjugate base of triphosphoric acid. It is produced on a large scale as a component of many domestic and industrial products ...
The standard state of a material (pure substance, mixture or solution) is a reference point used to calculate its properties under different conditions.A degree sign (°) or a superscript Plimsoll symbol (⦵) is used to designate a thermodynamic quantity in the standard state, such as change in enthalpy (ΔH°), change in entropy (ΔS°), or change in Gibbs free energy (ΔG°).
Gay-Lussac used the formula acquired from ΔV/V = αΔT to define the rate of expansion α for gases. For air, he found a relative expansion ΔV/V = 37.50% and obtained a value of α = 37.50%/100 °C = 1/266.66 °C which indicated that the value of absolute zero was approximately 266.66 °C below 0 °C. [ 12 ]
Here P 1 and V 1 represent the original pressure and volume, respectively, and P 2 and V 2 represent the second pressure and volume. Boyle's law, Charles's law, and Gay-Lussac's law form the combined gas law. The three gas laws in combination with Avogadro's law can be generalized by the ideal gas law.
Home & Garden. Lighter Side
He also added two receptions for 12 yards. After averaging 3.9 yards and 4.8 yards per carry the last two weeks, respectively, Jeanty was back to averaging 6.1 yards per rush attempt this week. He ...
The ideal gas equation can be rearranged to give an expression for the molar volume of an ideal gas: = = Hence, for a given temperature and pressure, the molar volume is the same for all ideal gases and is based on the gas constant: R = 8.314 462 618 153 24 m 3 ⋅Pa⋅K −1 ⋅mol −1, or about 8.205 736 608 095 96 × 10 −5 m 3 ⋅atm⋅K ...