Search results
Results from the WOW.Com Content Network
List of integrals of exponential functions; List of integrals of logarithmic functions; List of integrals of Gaussian functions; Gradshteyn, Ryzhik, Geronimus, Tseytlin, Jeffrey, Zwillinger, and Moll's (GR) Table of Integrals, Series, and Products contains a large collection of results. An even larger, multivolume table is the Integrals and ...
In mathematics, the definite integral ∫ a b f ( x ) d x {\displaystyle \int _{a}^{b}f(x)\,dx} is the area of the region in the xy -plane bounded by the graph of f , the x -axis, and the lines x = a and x = b , such that area above the x -axis adds to the total, and that below the x -axis subtracts from the total.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Donate; Help; Learn to edit; Community portal; Recent changes; Upload file
There are many alternatives to the classical calculus of Newton and Leibniz; for example, each of the infinitely many non-Newtonian calculi. [1] Occasionally an alternative calculus is more suited than the classical calculus for expressing a given scientific or mathematical idea.
The following is a list of integrals (antiderivative functions) of rational functions. Any rational function can be integrated by partial fraction decomposition of the function into a sum of functions of the form:
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file
A line integral (sometimes called a path integral) is an integral where the function to be integrated is evaluated along a curve. [42] Various different line integrals are in use. In the case of a closed curve it is also called a contour integral. The function to be integrated may be a scalar field or a vector field.
The following is a list of integrals (antiderivative functions) of irrational functions. For a complete list of integral functions, see lists of integrals. Throughout this article the constant of integration is omitted for brevity.