Search results
Results from the WOW.Com Content Network
In physics, natural abundance (NA) refers to the abundance of isotopes of a chemical element as naturally found on a planet. The relative atomic mass (a weighted average, weighted by mole-fraction abundance figures) of these isotopes is the atomic weight listed for the element in the periodic table. The abundance of an isotope varies from ...
Carbon (6 C) has 14 known isotopes, from 8 C to 20 C as well as 22 C, of which 12 C and 13 C are stable.The longest-lived radioisotope is 14 C, with a half-life of 5.70(3) × 10 3 years. . This is also the only carbon radioisotope found in nature, as trace quantities are formed cosmogenically by the reactio
A nuclide is a species of an atom with a specific number of protons and neutrons in the nucleus, for example, carbon-13 with 6 protons and 7 neutrons. The nuclide concept (referring to individual nuclear species) emphasizes nuclear properties over chemical properties, whereas the isotope concept (grouping all atoms of each element) emphasizes chemical over nuclear.
The standard atomic weight of a chemical element (symbol A r °(E) for element "E") is the weighted arithmetic mean of the relative isotopic masses of all isotopes of that element weighted by each isotope's abundance on Earth. For example, isotope 63 Cu (A r = 62.929) constitutes 69% of the copper on Earth, the rest being 65 Cu (A r = 64.927), so
Hydrogen (1 H) has three naturally occurring isotopes: 1 H, 2 H, and 3 H. 1 H and 2 H are stable, while 3 H has a half-life of 12.32(2) years. [3] [nb 1] Heavier isotopes also exist; all are synthetic and have a half-life of less than 1 zeptosecond (10 −21 s). [4] [5] Of these, 5 H is the least stable, while 7 H is the most.
Oxygen-14 is the second most stable radioisotope. Oxygen-14 ion beams are of interest to researchers of proton-rich nuclei; for example, one early experiment at the Facility for Rare Isotope Beams in East Lansing, Michigan, used a 14 O beam to study the beta decay transition of this isotope to 14 N. [18] [19]
Naturally occurring titanium (22 Ti) is composed of five stable isotopes; 46 Ti, 47 Ti, 48 Ti, 49 Ti and 50 Ti with 48 Ti being the most abundant (73.8% natural abundance).Twenty-one radioisotopes have been characterized, with the most stable being 44 Ti with a half-life of 60 years, 45 Ti with a half-life of 184.8 minutes, 51 Ti with a half-life of 5.76 minutes, and 52 Ti with a half-life of ...
Natural isotopes are either stable isotopes or radioactive isotopes that have a sufficiently long half-life to allow them to exist in substantial concentrations in the Earth (such as bismuth-209, with a half-life of 1.9 × 10 19 years, potassium-40 with a half-life of 1.251(3) × 10 9 years), daughter products of those isotopes (such as 234 Th, with a half-life of 24 days) or cosmogenic ...