enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Trial division - Wikipedia

    en.wikipedia.org/wiki/Trial_division

    An example of the trial division algorithm, using successive integers as trial factors, is as follows (in Python): def trial_division ( n : int ) -> list [ int ]: """Return a list of the prime factors for a natural number.""" a = [] # Prepare an empty list. f = 2 # The first possible factor.

  3. Generation of primes - Wikipedia

    en.wikipedia.org/wiki/Generation_of_primes

    A prime sieve or prime number sieve is a fast type of algorithm for finding primes. There are many prime sieves. The simple sieve of Eratosthenes (250s BCE), the sieve of Sundaram (1934), the still faster but more complicated sieve of Atkin [1] (2003), sieve of Pritchard (1979), and various wheel sieves [2] are most common.

  4. Integer factorization - Wikipedia

    en.wikipedia.org/wiki/Integer_factorization

    Continuing this process until every factor is prime is called prime factorization; the result is always unique up to the order of the factors by the prime factorization theorem. To factorize a small integer n using mental or pen-and-paper arithmetic, the simplest method is trial division : checking if the number is divisible by prime numbers 2 ...

  5. General number field sieve - Wikipedia

    en.wikipedia.org/wiki/General_number_field_sieve

    Similarly, the product of the factors a − r 2 b is a square in Z[r 2], with a "square root" which also can be computed. It should be remarked that the use of Gaussian elimination does not give the optimal run time of the algorithm. Instead, sparse matrix solving algorithms such as Block Lanczos or Block Wiedemann are used.

  6. Rational sieve - Wikipedia

    en.wikipedia.org/wiki/Rational_sieve

    In mathematics, the rational sieve is a general algorithm for factoring integers into prime factors. It is a special case of the general number field sieve. While it is less efficient than the general algorithm, it is conceptually simpler. It serves as a helpful first step in understanding how the general number field sieve works.

  7. Pocklington primality test - Wikipedia

    en.wikipedia.org/wiki/Pocklington_primality_test

    In our example, we can say with certainty that 2 and 3 are prime, and thus we have proved our result. The primality certificate is the list of (,) pairs, which can be quickly checked in the corollary. If our example had included large prime factors, the certificate would be more complicated.

  8. Sieve of Atkin - Wikipedia

    en.wikipedia.org/wiki/Sieve_of_Atkin

    The following is pseudocode which combines Atkin's algorithms 3.1, 3.2, and 3.3 [1] by using a combined set s of all the numbers modulo 60 excluding those which are multiples of the prime numbers 2, 3, and 5, as per the algorithms, for a straightforward version of the algorithm that supports optional bit-packing of the wheel; although not specifically mentioned in the referenced paper, this ...

  9. Computational problem - Wikipedia

    en.wikipedia.org/wiki/Computational_problem

    The question then is, whether there exists an algorithm that maps instances to solutions. For example, in the factoring problem, the instances are the integers n, and solutions are prime numbers p that are the nontrivial prime factors of n. An example of a computational problem without a solution is the Halting problem. Computational problems ...