enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Maximum entropy probability distribution - Wikipedia

    en.wikipedia.org/wiki/Maximum_entropy...

    By the above equation it is thus clear, that the latter must be the case. Hence ′ = = , so the parameters characterising the local extrema , ′ are identical, which means that the distributions themselves are identical. Thus, the local extreme is unique and by the above discussion, the maximum is unique – provided a local extreme actually ...

  3. Principle of maximum entropy - Wikipedia

    en.wikipedia.org/wiki/Principle_of_maximum_entropy

    The principle of maximum entropy states that the probability distribution which best represents the current state of knowledge about a system is the one with largest entropy, in the context of precisely stated prior data (such as a proposition that expresses testable information).

  4. Entropy (information theory) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(information_theory)

    Two bits of entropy: In the case of two fair coin tosses, the information entropy in bits is the base-2 logarithm of the number of possible outcomes ‍ — with two coins there are four possible outcomes, and two bits of entropy. Generally, information entropy is the average amount of information conveyed by an event, when considering all ...

  5. Normal distribution - Wikipedia

    en.wikipedia.org/wiki/Normal_distribution

    In probability theory and statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable.The general form of its probability density function is [2] [3] = ().

  6. Probability density function - Wikipedia

    en.wikipedia.org/wiki/Probability_density_function

    This is also called a "change of variable" and is in practice used to generate a random variable of arbitrary shape f g(X) = f Y using a known (for instance, uniform) random number generator. It is tempting to think that in order to find the expected value E(g(X)), one must first find the probability density f g(X) of the new random variable Y ...

  7. Mode (statistics) - Wikipedia

    en.wikipedia.org/wiki/Mode_(statistics)

    In statistics, the mode is the value that appears most often in a set of data values. [1] If X is a discrete random variable, the mode is the value x at which the probability mass function takes its maximum value (i.e., x=argmax x i P(X = x i)).

  8. Binomial proportion confidence interval - Wikipedia

    en.wikipedia.org/wiki/Binomial_proportion...

    The probability density function (PDF) for the Wilson score interval, plus PDF s at interval bounds. Tail areas are equal. Since the interval is derived by solving from the normal approximation to the binomial, the Wilson score interval ( , + ) has the property of being guaranteed to obtain the same result as the equivalent z-test or chi-squared test.

  9. Statistical model - Wikipedia

    en.wikipedia.org/wiki/Statistical_model

    In Bayesian statistics, the model is extended by adding a probability distribution over the parameter space . A statistical model can sometimes distinguish two sets of probability distributions. The first set Q = { F θ : θ ∈ Θ } {\displaystyle {\mathcal {Q}}=\{F_{\theta }:\theta \in \Theta \}} is the set of models considered for inference.