enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hooke's law - Wikipedia

    en.wikipedia.org/wiki/Hooke's_law

    In physics, Hooke's law is an empirical law which states that the force (F) needed to extend or compress a spring by some distance (x) scales linearly with respect to that distance—that is, F s = kx, where k is a constant factor characteristic of the spring (i.e., its stiffness), and x is small compared to the total possible deformation of the spring.

  3. List of equations in classical mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    For a stretched spring fixed at one end obeying Hooke's law, the elastic potential energy is = where r 2 and r 1 are collinear coordinates of the free end of the spring, in the direction of the extension/compression, and k is the spring constant.

  4. Series and parallel springs - Wikipedia

    en.wikipedia.org/wiki/Series_and_parallel_springs

    The following table gives formula for the spring that is equivalent to a system of two springs, in series or in parallel, whose spring constants are and . [1] The compliance c {\displaystyle c} of a spring is the reciprocal 1 / k {\displaystyle 1/k} of its spring constant.)

  5. Simple harmonic motion - Wikipedia

    en.wikipedia.org/wiki/Simple_harmonic_motion

    A mass m attached to a spring of spring constant k exhibits simple harmonic motion in closed space. The equation for describing the period: T = 2 π m k {\displaystyle T=2\pi {\sqrt {\frac {m}{k}}}} shows the period of oscillation is independent of the amplitude, though in practice the amplitude should be small.

  6. Wave equation - Wikipedia

    en.wikipedia.org/wiki/Wave_equation

    The one-dimensional initial-boundary value theory may be extended to an arbitrary number of space dimensions. Consider a domain D in m-dimensional x space, with boundary B. Then the wave equation is to be satisfied if x is in D, and t > 0. On the boundary of D, the solution u shall satisfy

  7. List of physical quantities - Wikipedia

    en.wikipedia.org/wiki/List_of_physical_quantities

    The quantity proportional to the number of particles in a sample, with the Avogadro constant as the proportionality constant: mole (mol) N: extensive, scalar Length: l: The one-dimensional extent of an object metre (m) L: extensive: Time: t: The duration of an event: second (s) T: scalar, intensive, extensive: Mass: m: A measure of resistance ...

  8. Strouhal number - Wikipedia

    en.wikipedia.org/wiki/Strouhal_number

    In dimensional analysis, the Strouhal number (St, or sometimes Sr to avoid the conflict with the Stanton number) is a dimensionless number describing oscillating flow mechanisms. The parameter is named after Vincenc Strouhal , a Czech physicist who experimented in 1878 with wires experiencing vortex shedding and singing in the wind.

  9. Mass-spring-damper model - Wikipedia

    en.wikipedia.org/wiki/Mass-spring-damper_model

    The mass-spring-damper model consists of discrete mass nodes distributed throughout an object and interconnected via a network of springs and dampers. This model is well-suited for modelling object with complex material properties such as nonlinearity and viscoelasticity .