enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Shear rate - Wikipedia

    en.wikipedia.org/wiki/Shear_rate

    The shear rate for a fluid flowing between two parallel plates, one moving at a constant speed and the other one stationary (Couette flow), is defined by ˙ =, where: ˙ is the shear rate, measured in reciprocal seconds;

  3. Shear stress - Wikipedia

    en.wikipedia.org/wiki/Shear_stress

    The region between these two points is named the boundary layer. For all Newtonian fluids in laminar flow, the shear stress is proportional to the strain rate in the fluid, where the viscosity is the constant of proportionality. For non-Newtonian fluids, the viscosity is not constant. The shear stress is imparted onto the boundary as a result ...

  4. Stress (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Stress_(mechanics)

    The vector T may be regarded as the sum of two components: the normal stress (compression or tension) perpendicular to the surface, and the shear stress that is parallel to the surface. If the normal unit vector n of the surface (pointing from Q towards P ) is assumed fixed, the normal component can be expressed by a single number, the dot ...

  5. Shear flow - Wikipedia

    en.wikipedia.org/wiki/Shear_flow

    In these instances, it can be useful to express internal shear stress as shear flow, which is found as the shear stress multiplied by the thickness of the section. An equivalent definition for shear flow is the shear force V per unit length of the perimeter around a thin-walled section. Shear flow has the dimensions of force per unit of length. [1]

  6. Couette flow - Wikipedia

    en.wikipedia.org/wiki/Couette_flow

    Couette flow is frequently used in undergraduate physics and engineering courses to illustrate shear-driven fluid motion. A simple configuration corresponds to two infinite, parallel plates separated by a distance ; one plate translates with a constant relative velocity in its own plane.

  7. Stress resultants - Wikipedia

    en.wikipedia.org/wiki/Stress_resultants

    These are the stress resultants (also called membrane forces, shear forces, and bending moment) that may be used to determine the detailed stress state in the structural element. A three-dimensional problem can then be reduced to a one-dimensional problem (for beams) or a two-dimensional problem (for plates and shells).

  8. Parallel-plate flow chamber - Wikipedia

    en.wikipedia.org/wiki/Parallel-Plate_Flow_Chamber

    The parallel-plate flow chamber, in its original design, is capable of producing well-defined wall shear-stress in the physiological range of 0.01-30 dyn/cm 2.Shear stress is generated by flowing fluid (e.g., anticoagulated whole blood or isolated cell suspensions) through the chamber over the immobilized substrate under controlled kinematic conditions using a syringe pump.

  9. Momentum diffusion - Wikipedia

    en.wikipedia.org/wiki/Momentum_diffusion

    The is the shear stress at any layer of the fluid where / (i.e. the gradient of velocity in a direction perpendicular to the flow and the area of the flat plate), is the local gradient and is the viscosity. The units of shear stress are Force/Unit Area.