enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Weak interaction - Wikipedia

    en.wikipedia.org/wiki/Weak_interaction

    The masses of these bosons are far greater than the mass of a proton or neutron, which is consistent with the short range of the weak force. [3] In fact, the force is termed weak because its field strength over any set distance is typically several orders of magnitude less than that of the electromagnetic force, which itself is further orders ...

  3. Mathematical formulation of the Standard Model - Wikipedia

    en.wikipedia.org/wiki/Mathematical_formulation...

    The pattern of weak isospin T 3, weak hypercharge Y W, and color charge of all known elementary particles, rotated by the weak mixing angle to show electric charge Q, roughly along the vertical. The neutral Higgs field (gray square) breaks the electroweak symmetry and interacts with other particles to give them mass.

  4. Standard Model - Wikipedia

    en.wikipedia.org/wiki/Standard_Model

    The weak interaction is responsible for various forms of particle decay, such as beta decay. It is weak and short-range, due to the fact that the weak mediating particles, W and Z bosons, have mass. W bosons have electric charge and mediate interactions that change the particle type (referred to as flavor) and charge.

  5. Electroweak interaction - Wikipedia

    en.wikipedia.org/wiki/Electroweak_interaction

    In particle physics, the electroweak interaction or electroweak force is the unified description of two of the fundamental interactions of nature: electromagnetism (electromagnetic interaction) and the weak interaction. Although these two forces appear very different at everyday low energies, the theory models them as two different aspects of ...

  6. W and Z bosons - Wikipedia

    en.wikipedia.org/wiki/W_and_Z_bosons

    Their high masses limit the range of the weak interaction. By way of contrast, the photon is the force carrier of the electromagnetic force and has zero mass, consistent with the infinite range of electromagnetism; the hypothetical graviton is also expected to have zero mass.

  7. Higgs mechanism - Wikipedia

    en.wikipedia.org/wiki/Higgs_mechanism

    In the Standard Model of particle physics, the Higgs mechanism is essential to explain the generation mechanism of the property "mass" for gauge bosons.Without the Higgs mechanism, all bosons (one of the two classes of particles, the other being fermions) would be considered massless, but measurements show that the W +, W −, and Z 0 bosons actually have relatively large masses of around 80 ...

  8. Fundamental interaction - Wikipedia

    en.wikipedia.org/wiki/Fundamental_interaction

    In quantum mechanics, physicists often use the terms "force" and "interaction" interchangeably; for example, the weak interaction is sometimes referred to as the "weak force". According to the present understanding, there are four fundamental interactions or forces: gravitation , electromagnetism, the weak interaction , and the strong interaction.

  9. Coupling constant - Wikipedia

    en.wikipedia.org/wiki/Coupling_constant

    For relatively weakly-interacting bodies, as is generally the case in electromagnetism or gravity or the nuclear interactions at short distances, the exchange of a single force carrier is a good first approximation of the interaction between the bodies, and classically the interaction will obey a /-law (note that if the force carrier is massive ...