Search results
Results from the WOW.Com Content Network
Boltzmann's equation—carved on his gravestone. [1]In statistical mechanics, Boltzmann's equation (also known as the Boltzmann–Planck equation) is a probability equation relating the entropy, also written as , of an ideal gas to the multiplicity (commonly denoted as or ), the number of real microstates corresponding to the gas's macrostate:
Ludwig Boltzmann defined entropy as a measure of the number of possible microscopic states (microstates) of a system in thermodynamic equilibrium, consistent with its macroscopic thermodynamic properties, which constitute the macrostate of the system. A useful illustration is the example of a sample of gas contained in a container.
Boltzmann's equation = is the realization that the entropy is proportional to with the constant of proportionality being the Boltzmann constant. Using the ideal gas equation of state ( PV = NkT ), It follows immediately that β = 1 / k T {\displaystyle \beta =1/kT} and α = − μ / k T {\displaystyle \alpha =-\mu /kT} so that the ...
The Boltzmann equation can be used to determine how physical quantities change, such as heat energy and momentum, when a fluid is in transport. One may also derive other properties characteristic to fluids such as viscosity , thermal conductivity , and electrical conductivity (by treating the charge carriers in a material as a gas). [ 2 ]
The mathematical expressions for thermodynamic entropy in the statistical thermodynamics formulation established by Ludwig Boltzmann and J. Willard Gibbs in the 1870s are similar to the information entropy by Claude Shannon and Ralph Hartley, developed in the 1940s.
There are multiple approaches to deriving the partition function. The following derivation follows the more powerful and general information-theoretic Jaynesian maximum entropy approach. According to the second law of thermodynamics, a system assumes a configuration of maximum entropy at thermodynamic equilibrium.
Although Boltzmann first linked entropy and probability in 1877, the relation was never expressed with a specific constant until Max Planck first introduced k, and gave a more precise value for it (1.346 × 10 −23 J/K, about 2.5% lower than today's figure), in his derivation of the law of black-body radiation in 1900–1901. [11]
Boltzmann's distribution is an exponential distribution. Boltzmann factor (vertical axis) as a function of temperature T for several energy differences ε i − ε j.. In statistical mechanics and mathematics, a Boltzmann distribution (also called Gibbs distribution [1]) is a probability distribution or probability measure that gives the probability that a system will be in a certain ...