enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Chain rule - Wikipedia

    en.wikipedia.org/wiki/Chain_rule

    In calculus, the chain rule is a formula that expresses the derivative of the composition of two differentiable functions f and g in terms of the derivatives of f and g.More precisely, if = is the function such that () = (()) for every x, then the chain rule is, in Lagrange's notation, ′ = ′ (()) ′ (). or, equivalently, ′ = ′ = (′) ′.

  3. Ximera - Wikipedia

    en.wikipedia.org/wiki/Ximera

    The course begins with an introduction to functions and limits, and goes on to explain derivatives. By the end of this course, the student will have learnt the fundamental theorem of calculus, chain rule, derivatives of transcendental functions, integration, and applications of all these in the real world. This course is followed by Calculus Two.

  4. Change of variables (PDE) - Wikipedia

    en.wikipedia.org/wiki/Change_of_variables_(PDE)

    This order of things puts everything in the direct line of fire of the chain rule; the partial derivatives , and are easy to compute and at the end, the original equation stands ready for immediate use."

  5. Integration by substitution - Wikipedia

    en.wikipedia.org/wiki/Integration_by_substitution

    In calculus, integration by substitution, also known as u-substitution, reverse chain rule or change of variables, [1] is a method for evaluating integrals and antiderivatives. It is the counterpart to the chain rule for differentiation , and can loosely be thought of as using the chain rule "backwards."

  6. Parametric derivative - Wikipedia

    en.wikipedia.org/wiki/Parametric_derivative

    This can be derived using the chain rule for derivatives: = and dividing both sides by to give the equation above. In general all of these derivatives — dy / dt , dx / dt , and dy / dx — are themselves functions of t and so can be written more explicitly as, for example, d y d x ( t ) {\displaystyle {\frac {dy}{dx}}(t)} .

  7. Inverse function rule - Wikipedia

    en.wikipedia.org/wiki/Inverse_function_rule

    Chain rule – For derivatives of composed functions; Differentiation of trigonometric functions – Mathematical process of finding the derivative of a trigonometric function; Differentiation rules – Rules for computing derivatives of functions; Implicit function theorem – On converting relations to functions of several real variables

  8. AOL

    search.aol.com

    The search engine that helps you find exactly what you're looking for. Find the most relevant information, video, images, and answers from all across the Web.

  9. Total derivative - Wikipedia

    en.wikipedia.org/wiki/Total_derivative

    The chain rule has a particularly elegant statement in terms of total derivatives. It says that, for two functions f {\displaystyle f} and g {\displaystyle g} , the total derivative of the composite function f ∘ g {\displaystyle f\circ g} at a {\displaystyle a} satisfies