Search results
Results from the WOW.Com Content Network
The classic example of a dehydration reaction is the Fischer esterification, which involves treating a carboxylic acid with an alcohol to give an ester RCO 2 H + R′OH ⇌ RCO 2 R′ + H 2 O Often such reactions require the presence of a dehydrating agent, i.e. a substance that reacts with water.
Condensation reactions likely played major roles in the synthesis of the first biotic molecules including early peptides and nucleic acids. In fact, condensation reactions would be required at multiple steps in RNA oligomerization: the condensation of nucleobases and sugars, nucleoside phosphorylation, and nucleotide polymerization. [6]
When deoxyribonucleotides polymerize to form DNA, the phosphate group from one nucleotide will bond to the 3' carbon on another nucleotide, forming a phosphodiester bond via dehydration synthesis. New nucleotides are always added to the 3' carbon of the last nucleotide, so synthesis always proceeds from 5' to 3'.
Anabolism has two classes of reactions. The first are dehydration synthesis reactions; these involve the joining of smaller molecules together to form larger, more complex molecules. These include the formation of carbohydrates, proteins, lipids and nucleic acids.
Neutral fats, also known as true fats, are simple lipids that are produced by the dehydration synthesis of one or more fatty acids with an alcohol like glycerol. Neutral fats are also known as triacylglycerols, [1] these lipids are dense as well as hydrophobic due to their long carbon chain and are there main function is to store energy ...
Peptide bond formation via dehydration reaction. When two amino acids form a dipeptide through a peptide bond, [1] it is a type of condensation reaction. [2] In this kind of condensation, two amino acids approach each other, with the non-side chain (C1) carboxylic acid moiety of one coming near the non-side chain (N2) amino moiety of the other.
Move over Lululemon, the Alo Yoga sale section has tons of items we're adding to our carts
For these two reactions, there are 3 possible products, 3-methyl-cyclohexene,1-methyl-cyclohexene, methylene-cyclohexane. The production of each of these occurs at different rates and the ratios of these also change over time. It is well known that the dehydration of the cis isomer is 30 times faster than the trans isomer.