enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Nucleophile - Wikipedia

    en.wikipedia.org/wiki/Nucleophile

    A hydroxide ion acting as a nucleophile in an S N 2 reaction, converting a haloalkane into an alcohol. In chemistry, a nucleophile is a chemical species that forms bonds by donating an electron pair. All molecules and ions with a free pair of electrons or at least one pi bond can act as nucleophiles. Because nucleophiles donate electrons, they ...

  3. Electrophile - Wikipedia

    en.wikipedia.org/wiki/Electrophile

    In chemistry, an electrophile is a chemical species that forms bonds with nucleophiles by accepting an electron pair. [1] Because electrophiles accept electrons, they are Lewis acids. [2] Most electrophiles are positively charged, have an atom that carries a partial positive charge, or have an atom that does not have an octet of electrons.

  4. Nucleophilic substitution - Wikipedia

    en.wikipedia.org/wiki/Nucleophilic_substitution

    The nucleophile may be electrically neutral or negatively charged, whereas the substrate is typically neutral or positively charged. An example of nucleophilic substitution is the hydrolysis of an alkyl bromide, R-Br under basic conditions, where the attacking nucleophile is hydroxyl (OH −) and the leaving group is bromide (Br −).

  5. Lewis acids and bases - Wikipedia

    en.wikipedia.org/wiki/Lewis_acids_and_bases

    The terms nucleophile and electrophile are sometimes interchangeable with Lewis base and Lewis acid, respectively. These terms, especially their abstract noun forms nucleophilicity and electrophilicity , emphasize the kinetic aspect of reactivity, while the Lewis basicity and Lewis acidity emphasize the thermodynamic aspect of Lewis adduct ...

  6. Hydrogen-bond catalysis - Wikipedia

    en.wikipedia.org/wiki/Hydrogen-bond_catalysis

    A powerful approach is the simultaneous activation of both partners in a reaction, e.g. nucleophile and electrophile, termed "bifunctional catalysis". In all cases, the close association of the catalyst molecule to substrate also makes hydrogen-bond catalysis a powerful method of inducing enantioselectivity .

  7. Alpha effect - Wikipedia

    en.wikipedia.org/wiki/Alpha_effect

    This is because α-nucleophiles showing the α-effect have smaller HOMO(nucleophile)-LUMO(substrate) gap, in other words, high HOMO energy level that allows more orbital interaction. Examples of α-nucleophiles with α-effects are shown in Figure 4. The α-nucleophiles have smaller HOMO lobes than the parent normal nucleophile. Figure 4.

  8. Electrophilic substitution - Wikipedia

    en.wikipedia.org/wiki/Electrophilic_substitution

    This reaction is similar to nucleophilic aliphatic substitution where the reactant is a nucleophile rather than an electrophile. The four possible electrophilic aliphatic substitution reaction mechanisms are S E 1, S E 2(front), S E 2(back) and S E i (Substitution Electrophilic), which are also similar to the nucleophile counterparts S N 1 and ...

  9. Electron-rich - Wikipedia

    en.wikipedia.org/wiki/Electron-rich

    with regards to nucleophilic substitution reactions, electron-rich species are relatively strong nucleophiles, as judged by rates of attack by electrophiles. For example, compared to benzene, pyrrole is more rapidly attacked by electrophiles.