enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Examples of vector spaces - Wikipedia

    en.wikipedia.org/wiki/Examples_of_vector_spaces

    The field of complex numbers gives complex coordinate space C n. The a + bi form of a complex number shows that C itself is a two-dimensional real vector space with coordinates (a,b). Similarly, the quaternions and the octonions are respectively four- and eight-dimensional real vector spaces, and C n is a 2n-dimensional real vector space.

  3. Dimension (vector space) - Wikipedia

    en.wikipedia.org/wiki/Dimension_(vector_space)

    A diagram of dimensions 1, 2, 3, and 4. In mathematics, the dimension of a vector space V is the cardinality (i.e., the number of vectors) of a basis of V over its base field. [1] [2] It is sometimes called Hamel dimension (after Georg Hamel) or algebraic dimension to distinguish it from other types of dimension.

  4. Vector space - Wikipedia

    en.wikipedia.org/wiki/Vector_space

    The set of complex numbers C, numbers that can be written in the form x + iy for real numbers x and y where i is the imaginary unit, form a vector space over the reals with the usual addition and multiplication: (x + iy) + (a + ib) = (x + a) + i(y + b) and c ⋅ (x + iy) = (c ⋅ x) + i(c ⋅ y) for real numbers x, y, a, b and c. The various ...

  5. Dual space - Wikipedia

    en.wikipedia.org/wiki/Dual_space

    Dual vector spaces find application in many branches of mathematics that use vector spaces, such as in tensor analysis with finite-dimensional vector spaces. When applied to vector spaces of functions (which are typically infinite-dimensional), dual spaces are used to describe measures , distributions , and Hilbert spaces .

  6. Vector notation - Wikipedia

    en.wikipedia.org/wiki/Vector_notation

    The term vector was coined by W. R. Hamilton around 1843, as he revealed quaternions, a system which uses vectors and scalars to span a four-dimensional space. For a quaternion q = a + bi + cj + dk, Hamilton used two projections: S q = a, for the scalar part of q, and V q = bi + cj + dk, the vector part.

  7. Complex coordinate space - Wikipedia

    en.wikipedia.org/wiki/Complex_coordinate_space

    Complex coordinate space is a vector space over the complex numbers, with componentwise addition and scalar multiplication. The real and imaginary parts of the coordinates set up a bijection of C n {\displaystyle \mathbb {C} ^{n}} with the 2 n -dimensional real coordinate space , R 2 n {\displaystyle \mathbb {R} ^{2n}} .

  8. Euclidean vector - Wikipedia

    en.wikipedia.org/wiki/Euclidean_vector

    A vector pointing from A to B. In mathematics, physics, and engineering, a Euclidean vector or simply a vector (sometimes called a geometric vector [1] or spatial vector [2]) is a geometric object that has magnitude (or length) and direction. Euclidean vectors can be added and scaled to form a vector space.

  9. Euclidean plane - Wikipedia

    en.wikipedia.org/wiki/Euclidean_plane

    where r: [a, b] → C is an arbitrary bijective parametrization of the curve C such that r(a) and r(b) give the endpoints of C and <. For a vector field F : U ⊆ R 2 → R 2, the line integral along a piecewise smooth curve C ⊂ U, in the direction of r, is defined as