Search results
Results from the WOW.Com Content Network
This process is denoted as a σ → σ* transition. Likewise, promotion of an electron from a pi-bonding orbital (π) to an antibonding pi orbital (π*) is denoted as a π → π* transition. Auxochromes with free electron pairs (denoted as "n") have their own transitions, as do aromatic pi bond transitions.
The electron–hole pair is the fundamental unit of generation and recombination in inorganic semiconductors, corresponding to an electron transitioning between the valence band and the conduction band where generation of an electron is a transition from the valence band to the conduction band and recombination leads to a reverse transition.
In 1962, Edwards and Pearson (the latter of HSAB theory) introduced the phrase alpha effect for this anomaly. He offered the suggestion that the effect was caused by a transition state (TS) stabilization effect: on entering the TS the free electron pair on the nucleophile moves away from the nucleus, causing a partial positive charge which can be stabilized by an adjacent lone pair as for ...
That is, the spin of the excited electron is still paired with the ground state electron (a pair of electrons in the same energy level must have opposite spins, per the Pauli exclusion principle). In a triplet state the excited electron is no longer paired with the ground state electron; that is, they are parallel (same spin). Since excitation ...
While d-d transitions are in principle forbidden by symmetry, they become weakly-allowed in a crystal when the symmetry is broken by structural relaxations or other effects. Absorption of a photon resonant with a d-d transition leads to the creation of an electron-hole pair on a single atomic site, which can be treated as a Frenkel exciton.
That is, the unoccupied d orbitals of transition metals participate in bonding, which influences the colors they absorb in solution. In ligand field theory, the various d orbitals are affected differently when surrounded by a field of neighboring ligands and are raised or lowered in energy based on the strength of their interaction with the ...
It is a type of electron avalanche. The avalanche process occurs when carriers in the transition region are accelerated by the electric field to energies sufficient to create mobile or free electron-hole pairs via collisions with bound electrons.
For each transition metal present, 10 electrons are subtracted from the total electron count. For example, in Rh 6 (CO) 16 the total number of electrons would be 6 × 9 + 16 × 2 − 6 × 10 = 86 – 60 = 26.