enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Helmholtz coil - Wikipedia

    en.wikipedia.org/wiki/Helmholtz_coil

    A Helmholtz coil Helmholtz coil schematic drawing. A Helmholtz coil is a device for producing a region of nearly uniform magnetic field, named after the German physicist Hermann von Helmholtz. It consists of two electromagnets on the same axis, carrying an equal electric current in the same direction. Besides creating magnetic fields, Helmholtz ...

  3. Helmholtz equation - Wikipedia

    en.wikipedia.org/wiki/Helmholtz_equation

    The Helmholtz equation has a variety of applications in physics and other sciences, including the wave equation, the diffusion equation, and the Schrödinger equation for a free particle. In optics, the Helmholtz equation is the wave equation for the electric field. [1] The equation is named after Hermann von Helmholtz, who studied it in 1860. [2]

  4. Sommerfeld radiation condition - Wikipedia

    en.wikipedia.org/wiki/Sommerfeld_radiation_condition

    The Sommerfeld radiation condition is used to solve uniquely the Helmholtz equation. For example, consider the problem of radiation due to a point source in three dimensions, so the function in the Helmholtz equation is () = (), where is the Dirac delta function. This problem has an infinite number of solutions, for example, any function of the ...

  5. Inverse problem for Lagrangian mechanics - Wikipedia

    en.wikipedia.org/wiki/Inverse_problem_for...

    To simplify the notation, let = ˙ and define a collection of n 2 functions Φ j i by =. Theorem. (Douglas 1941) There exists a Lagrangian L : [0, T] × TM → R such that the equations (E) are its Euler–Lagrange equations if and only if there exists a non-singular symmetric matrix g with entries g ij depending on both u and v satisfying the following three Helmholtz conditions:

  6. Helmholtz decomposition - Wikipedia

    en.wikipedia.org/wiki/Helmholtz_decomposition

    The Helmholtz decomposition in three dimensions was first described in 1849 [9] by George Gabriel Stokes for a theory of diffraction. Hermann von Helmholtz published his paper on some hydrodynamic basic equations in 1858, [10] [11] which was part of his research on the Helmholtz's theorems describing the motion of fluid in the vicinity of vortex lines. [11]

  7. File:Mpl example Helmoltz coils.svg - Wikipedia

    en.wikipedia.org/wiki/File:Mpl_example_Helmoltz...

    English: Cross section of B (magnetic field strength) magnitude in a Helmholtz coil (actually consisting of two coils: one at the top, one at the bottom in the plot). The eight contours are for field magnitudes of 0.5 {\displaystyle B_0}, 0.8 {\displaystyle B_0}, 0.9 {\displaystyle B_0}, 0.95 {\displaystyle B_0}, 0.99 {\displaystyle B_0}, 1.01 {\displaystyle B_0}, 1.05 {\displaystyle B_0}, and ...

  8. Fast multipole method - Wikipedia

    en.wikipedia.org/wiki/Fast_multipole_method

    The fast multipole method (FMM) is a numerical technique that was developed to speed up the calculation of long-ranged forces in the n-body problem.It does this by expanding the system Green's function using a multipole expansion, which allows one to group sources that lie close together and treat them as if they are a single source.

  9. Spacecraft Magnetic Test Facility - Wikipedia

    en.wikipedia.org/wiki/Spacecraft_Magnetic_Test...

    The coil cancels the Earth's magnetic field within a central 6-foot (1.8 m) spherical volume. Fluctuations in the ambient field are removed by a servo control, producing stability to half a nanotesla. An artificial magnetic vector can be produced and rotated at a variable rate. 9.42-foot (2.87 m) Helmholtz coils are used for perm/deperm ...