enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lens - Wikipedia

    en.wikipedia.org/wiki/Lens

    This magnification formula provides two easy ways to distinguish converging (f > 0) and diverging (f < 0) lenses: For an object very close to the lens (0 < S 1 < | f |), a converging lens would form a magnified (bigger) virtual image, whereas a diverging lens would form a demagnified (smaller) image; For an object very far from the lens (S 1 ...

  3. Vergence (optics) - Wikipedia

    en.wikipedia.org/wiki/Vergence_(optics)

    For optics like convex lenses, the converging point of the light exiting the lens is on the input side of the focal plane, and is positive in optical power. For concave lenses, the focal point is on the back side of the lens, or the output side of the focal plane, and is negative in power.

  4. Focal length - Wikipedia

    en.wikipedia.org/wiki/Focal_length

    For a converging lens (for example a convex lens), the focal length is positive and is the distance at which a beam of collimated light will be focused to a single spot. For a diverging lens (for example a concave lens ), the focal length is negative and is the distance to the point from which a collimated beam appears to be diverging after ...

  5. Real image - Wikipedia

    en.wikipedia.org/wiki/Real_image

    A real image occurs at points where rays actually converge, whereas a virtual image occurs at points that rays appear to be diverging from. Real images can be produced by concave mirrors and converging lenses, only if the object is placed further away from the mirror/lens than the focal point, and this real image is inverted. As the object ...

  6. Virtual image - Wikipedia

    en.wikipedia.org/wiki/Virtual_image

    A converging lens (one that is thicker in the middle than at the edges) or a convex mirror is also capable of producing a virtual image if the object is within the focal length. Such an image will be magnified. In contrast, an object placed in front of a converging lens or concave mirror at a position beyond the focal length produces a real image.

  7. Ray transfer matrix analysis - Wikipedia

    en.wikipedia.org/wiki/Ray_transfer_matrix_analysis

    R = radius of curvature, R > 0 for concave, valid in the paraxial approximation θ is the mirror angle of incidence in the horizontal plane. Thin lens f = focal length of lens where f > 0 for convex/positive (converging) lens.

  8. Curved mirror - Wikipedia

    en.wikipedia.org/wiki/Curved_mirror

    A concave mirror, or converging mirror, has a reflecting surface that is recessed inward (away from the incident light). Concave mirrors reflect light inward to one focal point. They are used to focus light. Unlike convex mirrors, concave mirrors show different image types depending on the distance between the object and the mirror.

  9. Geometrical optics - Wikipedia

    en.wikipedia.org/wiki/Geometrical_optics

    A device which produces converging or diverging light rays due to refraction is known as a lens. Thin lenses produce focal points on either side that can be modeled using the lensmaker's equation. [5] In general, two types of lenses exist: convex lenses, which cause parallel light rays to converge, and concave lenses, which cause parallel light ...