Search results
Results from the WOW.Com Content Network
where V is the number of vertices, E is the number of edges, and F is the number of faces. This equation is known as Euler's polyhedron formula. Thus the number of edges is 2 less than the sum of the numbers of vertices and faces. For example, a cube has 8 vertices and 6 faces, and hence 12 edges.
The skeleton of the tetrahedron (comprising the vertices and edges) forms a graph, with 4 vertices, and 6 edges. It is a special case of the complete graph, K 4, and wheel graph, W 4. [48] It is one of 5 Platonic graphs, each a skeleton of its Platonic solid.
The vertices can be colored with 3 colors, as can the edges, and the diameter is five. [37] The dodecahedral graph is Hamiltonian, meaning a path visits all of its vertices exactly once. The name of this property is named after William Rowan Hamilton, who invented a mathematical game known as the icosian game.
The number of edges of the arrangement is at most , as may be seen either by using the Euler characteristic to calculate it from the numbers of vertices and cells, or by observing that each line is partitioned into at most edges by the other lines.
This definition rules out, for example, the square pyramid (since although all the faces are regular, the square base is not congruent to the triangular sides), or the shape formed by joining two tetrahedra together (since although all faces of that triangular bipyramid would be equilateral triangles, that is, congruent and regular, some ...
A triangle is a polygon with three corners and three sides, one of the basic shapes in geometry.The corners, also called vertices, are zero-dimensional points while the sides connecting them, also called edges, are one-dimensional line segments.
where V is the number of vertices, E is the number of edges, and F is the number of faces. This equation is known as Euler's polyhedron formula. Thus the number of vertices is 2 more than the excess of the number of edges over the number of faces. For example, since a cube has 12 edges and 6 faces, the formula implies that it has eight vertices.
The truncated tetrahedron can be constructed from a regular tetrahedron by cutting all of its vertices off, a process known as truncation. [1] The resulting polyhedron has 4 equilateral triangles and 4 regular hexagons, 18 edges, and 12 vertices. [2] With edge length 1, the Cartesian coordinates of the 12 vertices are points