Search results
Results from the WOW.Com Content Network
Aspartic acid (symbol Asp or D; [4] the ionic form is known as aspartate), is an α-amino acid that is used in the biosynthesis of proteins. [5] The L-isomer of aspartic acid is one of the 22 proteinogenic amino acids, i.e., the building blocks of proteins. D-aspartic acid is one of two D-amino acids commonly found in mammals.
Biosynthesis by the transsulfuration pathway starts with aspartic acid. Relevant enzymes include aspartokinase , aspartate-semialdehyde dehydrogenase , homoserine dehydrogenase , homoserine O-transsuccinylase , cystathionine-γ-synthase , Cystathionine-β-lyase (in mammals, this step is performed by homocysteine methyltransferase or betaine ...
The biosynthesis of aspartate is a one step reaction that is catalyzed by a single enzyme. The enzyme aspartate aminotransferase catalyzes the transfer of an amino group from aspartate onto α-ketoglutarate to yield glutamate and oxaloacetate. [41]
The Purine Nucleotide Cycle is a metabolic pathway in protein metabolism requiring the amino acids aspartate and glutamate. The cycle is used to regulate the levels of adenine nucleotides, in which ammonia and fumarate are generated. [2] AMP converts into IMP and the byproduct ammonia.
The products usually are either alanine, aspartate or glutamate, since their corresponding alpha-keto acids are produced through metabolism of fuels. Being a major degradative aminoacid pathway, lysine , proline and threonine are the only three amino acids that do not always undergo transamination and rather use respective dehydrogenase.
The biosynthesis of asparagine from oxaloacetate. In reaction that is the reverse of its biosynthesis, asparagine is hydrolyzed to aspartate by asparaginase. Aspartate then undergoes transamination to form glutamate and oxaloacetate from alpha-ketoglutarate. Oxaloacetate, which enters the citric acid cycle (Krebs cycle). [21]
Aspartate kinase or aspartokinase (AK) is an enzyme that catalyzes the phosphorylation of the amino acid aspartate. This reaction is the first step in the biosynthesis of three other amino acids: methionine , lysine , and threonine , known as the "aspartate family".
This is the regulated step in the pyrimidine biosynthesis in animals. 2 aspartic transcarbamoylase (aspartate carbamoyl transferase) [2] carbamoyl aspartic acid: The phosphate group is replaced with Aspartate. This is the regulated step in the pyrimidine biosynthesis in bacteria. 3 dihydroorotase [2] dihydroorotate: Ring formation and ...