Search results
Results from the WOW.Com Content Network
In computer graphics, the Cohen–Sutherland algorithm is an algorithm used for line clipping. The algorithm divides a two-dimensional space into 9 regions and then efficiently determines the lines and portions of lines that are visible in the central region of interest (the viewport). The algorithm was developed in 1967 during flight simulator ...
The Nicholl–Lee–Nicholl algorithm is a fast line-clipping algorithm that reduces the chances of clipping a single line segment multiple times, as may happen in the Cohen–Sutherland algorithm. The clipping window is divided into a number of different areas, depending on the position of the initial point of the line to be clipped.
Pages in category "Line clipping algorithms" ... Cohen–Sutherland algorithm; Cyrus–Beck algorithm; L. Liang–Barsky algorithm; N. Nicholl–Lee–Nicholl algorithm
Clipping, in the context of computer graphics, is a method to selectively enable or disable rendering operations within a defined region of interest. Mathematically, clipping can be described using the terminology of constructive geometry. A rendering algorithm only draws pixels in the intersection between the
Cyrus–Beck is a general algorithm and can be used with a convex polygon clipping window, unlike Cohen-Sutherland, which can be used only on a rectangular clipping area. Here the parametric equation of a line in the view plane is p ( t ) = t p 1 + ( 1 − t ) p 0 {\displaystyle \mathbf {p} (t)=t\mathbf {p} _{1}+(1-t)\mathbf {p} _{0}} where 0 ...
1. Tether (USDT) Tether is a stablecoin, which makes it different from other types of cryptocurrencies.Tether’s value is backed by one-for-one cash reserves in the U.S. dollar, making it a bit ...
The last image we have of Patrick Cagey is of his first moments as a free man. He has just walked out of a 30-day drug treatment center in Georgetown, Kentucky, dressed in gym clothes and carrying a Nike duffel bag.
The Liang–Barsky algorithm uses the parametric equation of a line and inequalities describing the range of the clipping window to determine the intersections between the line and the clip window. With these intersections, it knows which portion of the line should be drawn. So this algorithm is significantly more efficient than Cohen ...