Search results
Results from the WOW.Com Content Network
A nuclide is a species of an atom with a specific number of protons and neutrons in the nucleus, for example, carbon-13 with 6 protons and 7 neutrons. The nuclide concept (referring to individual nuclear species) emphasizes nuclear properties over chemical properties, whereas the isotope concept (grouping all atoms of each element) emphasizes chemical over nuclear.
There are 251 known so-called stable nuclides. Many of these in theory could decay through spontaneous fission, alpha decay, double beta decay, etc. with a very long half-life, but no radioactive decay has yet been observed. Thus, the number of stable nuclides is subject to change if some of these 251 are determined to be very long-lived ...
In contrast, the proton numbers for which there are no stable isotopes are 43, 61, and 83 or more (83, 90, 92, and perhaps 94 have primordial radionuclides). [3] This is related to nuclear magic numbers , the number of nucleons forming complete shells within the nucleus, e.g. 2, 8, 20, 28, 50, 82, and 126.
It is prevented from having a stable isotope with 4 protons and 6 neutrons by the very large mismatch in proton/neutron ratio for such a light element. (Nevertheless, beryllium-10 has a half-life of 1.36 million years, which is too short to be primordial, but still indicates unusual stability for a light isotope with such an imbalance.)
Isotope of plutonium; too unstable to exist in our world, but exists naturally in fictional parallel universes whose strong nuclear force is stronger. This is used as a source of energy where turned into 186 W, releasing electrons in the process. [citation needed] Lightest known isotope of plutonium: 227 Pu. Quantium
The Mattauch isobar rule states that if two adjacent elements on the periodic table have isotopes of the same mass number, at least one of these isobars must be a radionuclide (radioactive). In cases of three isobars of sequential elements where the first and last are stable (this is often the case for even-even nuclides, see above ), branched ...
For other isotopes, the isotopic mass is usually within 0.1 u of the mass number. For example, 35 Cl (17 protons and 18 neutrons) has a mass number of 35 and an isotopic mass of 34.96885. [7] The difference of the actual isotopic mass minus the mass number of an atom is known as the mass excess, [8] which for 35 Cl is –0.03115.
Natural isotopes are either stable isotopes or radioactive isotopes that have a sufficiently long half-life to allow them to exist in substantial concentrations in the Earth (such as bismuth-209, with a half-life of 1.9 × 10 19 years, potassium-40 with a half-life of 1.251(3) × 10 9 years), daughter products of those isotopes (such as 234 Th, with a half-life of 24 days) or cosmogenic ...