Search results
Results from the WOW.Com Content Network
However, there are three more infinite series of symmetry groups with this abstract group type: C nv of order 2n, the symmetry group of a regular n-sided pyramid; D nd of order 4n, the symmetry group of a regular n-sided antiprism; D nh of order 4n for odd n. For n = 1 we get D 2, already covered above, so n ≥ 3. Note the following property:
In a symmetry group, the group elements are the symmetry operations (not the symmetry elements), and the binary combination consists of applying first one symmetry operation and then the other. An example is the sequence of a C 4 rotation about the z-axis and a reflection in the xy-plane, denoted σ(xy) C 4 .
In group theory, the symmetry group of a geometric object is the group of all transformations under which the object is invariant, endowed with the group operation of composition. Such a transformation is an invertible mapping of the ambient space which takes the object to itself, and which preserves all the relevant structure of the object.
D nh is the symmetry group for a regular n-sided prism and also for a regular n-sided bipyramid. D nd is the symmetry group for a regular n-sided antiprism, and also for a regular n-sided trapezohedron. D n is the symmetry group of a partially rotated prism. n = 1 is not included because the three symmetries are equal to other ones:
Each crystallographic point group defines the (geometric) crystal class of the crystal. The point group of a crystal determines, among other things, the directional variation of physical properties that arise from its structure, including optical properties such as birefringency , or electro-optical features such as the Pockels effect .
In geometry and crystallography, a Bravais lattice is a category of translative symmetry groups (also known as lattices) in three directions. Such symmetry groups consist of translations by vectors of the form R = n 1 a 1 + n 2 a 2 + n 3 a 3, where n 1, n 2, and n 3 are integers and a 1, a 2, and a 3 are three non-coplanar vectors, called ...
The crystallographic point group or crystal class is the mathematical group comprising the symmetry operations that leave at least one point unmoved and that leave the appearance of the crystal structure unchanged. These symmetry operations include
Finite spherical symmetry groups are also called point groups in three dimensions. There are five fundamental symmetry classes which have triangular fundamental domains: dihedral, cyclic, tetrahedral, octahedral, and icosahedral symmetry. This article lists the groups by Schoenflies notation, Coxeter notation, [1] orbifold notation, [2] and order.