enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Valence electron - Wikipedia

    en.wikipedia.org/wiki/Valence_electron

    The number of valence electrons of an element can be determined by the periodic table group (vertical column) in which the element is categorized. In groups 1–12, the group number matches the number of valence electrons; in groups 13–18, the units digit of the group number matches the number of valence electrons. (Helium is the sole ...

  3. Valence (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Valence_(chemistry)

    The valence is the combining capacity of an atom of a given element, determined by the number of hydrogen atoms that it combines with. In methane, carbon has a valence of 4; in ammonia, nitrogen has a valence of 3; in water, oxygen has a valence of 2; and in hydrogen chloride, chlorine has a valence of 1.

  4. Periodic table - Wikipedia

    en.wikipedia.org/wiki/Periodic_table

    The 2s electron is lithium's only valence electron, as the 1s subshell is now too tightly bound to the nucleus to participate in chemical bonding to other atoms: such a shell is called a "core shell". The 1s subshell is a core shell for all elements from lithium onward. The 2s subshell is completed by the next element beryllium (1s 2 2s 2). The ...

  5. Group (periodic table) - Wikipedia

    en.wikipedia.org/wiki/Group_(periodic_table)

    The numbers indicate approximately the highest oxidation number of the elements in that group, and so indicate similar chemistry with other elements with the same numeral. The number proceeds in a linearly increasing fashion for the most part, once on the left of the table, and once on the right (see List of oxidation states of the elements ...

  6. Pnictogen - Wikipedia

    en.wikipedia.org/wiki/Pnictogen

    This group has a defining characteristic whereby each component element has 5 electrons in its valence shell, that is, 2 electrons in the s sub-shell and 3 unpaired electrons in the p sub-shell. They are therefore 3 electrons shy of filling their valence shell in their non-ionized state.

  7. Noble gas - Wikipedia

    en.wikipedia.org/wiki/Noble_gas

    The noble gases have full valence electron shells. Valence electrons are the outermost electrons of an atom and are normally the only electrons that participate in chemical bonding. Atoms with full valence electron shells are extremely stable and therefore do not tend to form chemical bonds and have little tendency to gain or lose electrons. [35]

  8. Group 12 element - Wikipedia

    en.wikipedia.org/wiki/Group_12_element

    However, beryllium and magnesium are small atoms, unlike the heavier alkaline earth metals and like the group 12 elements (which have a greater nuclear charge but the same number of valence electrons), and the periodic trends down group 2 from beryllium to radium (similar to that of the alkali metals) are not as smooth when going down from ...

  9. Electron configurations of the elements (data page) - Wikipedia

    en.wikipedia.org/wiki/Electron_configurations_of...

    This page shows the electron configurations of the neutral gaseous atoms in their ground states. For each atom the subshells are given first in concise form, then with all subshells written out, followed by the number of electrons per shell. For phosphorus (element 15) as an example, the concise form is [Ne] 3s 2 3p 3.