enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hypersurface - Wikipedia

    en.wikipedia.org/wiki/Hypersurface

    In geometry, a hypersurface is a generalization of the concepts of hyperplane, plane curve, and surface.A hypersurface is a manifold or an algebraic variety of dimension n − 1, which is embedded in an ambient space of dimension n, generally a Euclidean space, an affine space or a projective space. [1]

  3. Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Euclidean_algorithm

    The Euclidean algorithm was probably invented before Euclid, depicted here holding a compass in a painting of about 1474. The Euclidean algorithm is one of the oldest algorithms in common use. [27] It appears in Euclid's Elements (c. 300 BC), specifically in Book 7 (Propositions 1–2) and Book 10 (Propositions 2–3). In Book 7, the algorithm ...

  4. Hyperplane - Wikipedia

    en.wikipedia.org/wiki/Hyperplane

    In geometry, a hyperplane of an n-dimensional space V is a subspace of dimension n − 1, or equivalently, of codimension 1 in V.The space V may be a Euclidean space or more generally an affine space, or a vector space or a projective space, and the notion of hyperplane varies correspondingly since the definition of subspace differs in these settings; in all cases however, any hyperplane can ...

  5. Closest pair of points problem - Wikipedia

    en.wikipedia.org/wiki/Closest_pair_of_points_problem

    Randomized algorithms that solve the problem in linear time are known, in Euclidean spaces whose dimension is treated as a constant for the purposes of asymptotic analysis. [ 2 ] [ 3 ] [ 4 ] This is significantly faster than the O ( n 2 ) {\displaystyle O(n^{2})} time (expressed here in big O notation ) that would be obtained by a naive ...

  6. Laplace–Beltrami operator - Wikipedia

    en.wikipedia.org/wiki/Laplace–Beltrami_operator

    More generally, one can formulate a similar trick using the normal bundle to define the Laplace–Beltrami operator of any Riemannian manifold isometrically embedded as a hypersurface of Euclidean space. One can also give an intrinsic description of the Laplace–Beltrami operator on the sphere in a normal coordinate system.

  7. Level set - Wikipedia

    en.wikipedia.org/wiki/Level_set

    A consequence of this theorem (and its proof) is that if f is differentiable, a level set is a hypersurface and a manifold outside the critical points of f. At a critical point, a level set may be reduced to a point (for example at a local extremum of f) or may have a singularity such as a self-intersection point or a cusp.

  8. Hyperplane separation theorem - Wikipedia

    en.wikipedia.org/wiki/Hyperplane_separation_theorem

    In geometry, the hyperplane separation theorem is a theorem about disjoint convex sets in n-dimensional Euclidean space.There are several rather similar versions. In one version of the theorem, if both these sets are closed and at least one of them is compact, then there is a hyperplane in between them and even two parallel hyperplanes in between them separated by a gap.

  9. Complex lamellar vector field - Wikipedia

    en.wikipedia.org/wiki/Complex_lamellar_vector_field

    In the special case of vector fields on three-dimensional Euclidean space, the hypersurface-orthogonal condition is equivalent to the complex lamellar condition, as seen by rewriting ω ∧ dω in terms of the Hodge star operator as ∗ ω, ∗dω , with ∗dω being the 1-form dual to the curl vector field. [10]