Search results
Results from the WOW.Com Content Network
By convention, the coding strand is the strand used when displaying a DNA sequence. It is presented in the 5' to 3' direction. Wherever a gene exists on a DNA molecule, one strand is the coding strand (or sense strand), and the other is the noncoding strand (also called the antisense strand, [3] anticoding strand, template strand or transcribed ...
The coding region of a gene, also known as the coding DNA sequence (CDS), is the portion of a gene's DNA or RNA that codes for a protein. [1] Studying the length, composition, regulation, splicing, structures, and functions of coding regions compared to non-coding regions over different species and time periods can provide a significant amount of important information regarding gene ...
Genes take up about 30% of the pufferfish genome and the coding DNA is about 10%. (Non-coding DNA = 90%.) The reduced size of the pufferfish genome is due to a reduction in the length of introns and less repetitive DNA. [8] [9] Utricularia gibba, a bladderwort plant, has a very small nuclear genome (100.7 Mb) compared to most plants.
This also removes the need for an RNA primer to initiate RNA synthesis, as is the case in DNA replication. The non-template (sense) strand of DNA is called the coding strand, because its sequence is the same as the newly created RNA transcript (except for the substitution of uracil for thymine). This is the strand that is used by convention ...
a: template, b: leading strand, c: lagging strand, d: replication fork, e: primer, f: Okazaki fragments Many enzymes are involved in the DNA replication fork. The replication fork is a structure that forms within the long helical DNA during DNA replication.
These trinucleotide repeat expansions may occur through strand slippage during DNA replication or during DNA repair synthesis. [29] It has been noted that genes containing pathogenic CAG repeats often encode proteins that themselves have a role in the DNA damage response and that repeat expansions may impair specific DNA repair pathways. [30]
In genetics, a sense strand, or coding strand, is the segment within double-stranded DNA that carries the translatable code in the 5′ to 3′ direction, and which is complementary to the antisense strand of DNA, or template strand, which does not carry the translatable code in the 5′ to 3′ direction. [1]
During DNA replication, the replisome will unwind the parental duplex DNA into a two single-stranded DNA template replication fork in a 5' to 3' direction. The leading strand is the template strand that is being replicated in the same direction as the movement of the replication fork.