enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Shortest path problem - Wikipedia

    en.wikipedia.org/wiki/Shortest_path_problem

    Find the Shortest Path: Use a shortest path algorithm (e.g., Dijkstra's algorithm, Bellman-Ford algorithm) to find the shortest path from the source node to the sink node in the residual graph. Augment the Flow: Find the minimum capacity along the shortest path. Increase the flow on the edges of the shortest path by this minimum capacity.

  3. List of algorithms - Wikipedia

    en.wikipedia.org/wiki/List_of_algorithms

    Shortest path problem. Bellman–Ford algorithm: computes shortest paths in a weighted graph (where some of the edge weights may be negative) Dijkstra's algorithm: computes shortest paths in a graph with non-negative edge weights; Floyd–Warshall algorithm: solves the all pairs shortest path problem in a weighted, directed graph

  4. Parallel all-pairs shortest path algorithm - Wikipedia

    en.wikipedia.org/wiki/Parallel_all-pairs...

    The Dijkstra algorithm originally was proposed as a solver for the single-source-shortest-paths problem. However, the algorithm can easily be used for solving the All-Pair-Shortest-Paths problem by executing the Single-Source variant with each node in the role of the root node. In pseudocode such an implementation could look as follows:

  5. k shortest path routing - Wikipedia

    en.wikipedia.org/wiki/K_shortest_path_routing

    It asks not only about a shortest path but also about next k−1 shortest paths (which may be longer than the shortest path). A variation of the problem is the loopless k shortest paths. Finding k shortest paths is possible by extending Dijkstra's algorithm or the Bellman-Ford algorithm. [citation needed]

  6. Dijkstra's algorithm - Wikipedia

    en.wikipedia.org/wiki/Dijkstra's_algorithm

    Dijkstra's algorithm finds the shortest path from a given source node to every other node. [7]: 196–206 It can be used to find the shortest path to a specific destination node, by terminating the algorithm after determining the shortest path to the destination node. For example, if the nodes of the graph represent cities, and the costs of ...

  7. Category:Routing algorithms - Wikipedia

    en.wikipedia.org/wiki/Category:Routing_algorithms

    Print/export Download as PDF ... Pages in category "Routing algorithms" ... Edge disjoint shortest pair algorithm; Equal-cost multi-path routing;

  8. Johnson's algorithm - Wikipedia

    en.wikipedia.org/wiki/Johnson's_algorithm

    The first three stages of Johnson's algorithm are depicted in the illustration below. The graph on the left of the illustration has two negative edges, but no negative cycles. The center graph shows the new vertex q, a shortest path tree as computed by the Bellman–Ford algorithm with q as starting vertex, and the values h(v) computed at each other node as the length of the shortest path from ...

  9. Yen's algorithm - Wikipedia

    en.wikipedia.org/wiki/Yen's_algorithm

    The time complexity of Yen's algorithm is dependent on the shortest path algorithm used in the computation of the spur paths, so the Dijkstra algorithm is assumed. Dijkstra's algorithm has a worse case time complexity of O ( N 2 ) {\displaystyle O(N^{2})} , but using a Fibonacci heap it becomes O ( M + N log ⁡ N ) {\displaystyle O(M+N\log N ...