Search results
Results from the WOW.Com Content Network
Here the receiving instrument is on the surface of the Earth. In this technique the interference of the direct and reflected signals is used rather than a Delay Doppler Map or measuring the two signals separately. In the example shown, a GNSS antenna is ~2.5 meters above a planar surface. Both direct (blue) and reflected (red) GNSS signals are ...
A typical application with the SAMV algorithm in SISO radar/sonar range-Doppler imaging problem. This imaging problem is a single-snapshot application, and algorithms compatible with single-snapshot estimation are included, i.e., matched filter (MF, similar to the periodogram or backprojection , which is often efficiently implemented as fast ...
Range ambiguity resolution is a technique used with medium pulse-repetition frequency (PRF) radar to obtain range information for distances that exceed the distance between transmit pulses. This signal processing technique is required with pulse-Doppler radar .
This is what requires STAP to be an adaptive technique. Note that even in this idealized example, in general, we must steer over the 2-D angle-Doppler plane at discrete points to detect potential targets (moving the location of the 2-D sinc main lobe shown in the figure), and do so for each of the range bins in our system.
In pulsed radar and sonar signal processing, an ambiguity function is a two-dimensional function of propagation delay and Doppler frequency, (,).It represents the distortion of a returned pulse due to the receiver matched filter [1] (commonly, but not exclusively, used in pulse compression radar) of the return from a moving target.
Pulse Doppler relies on medium pulse repetition frequency (PRF) from about 3 kHz to 30 kHz. Each transmit pulse is separated by 5 km to 50 km distance. Range and speed of the target are folded by a modulo operation produced by the sampling process. True range is found using the ambiguity resolution process. Ambiguity resolution process explanation
All of the typical measurements that a non-monopulse system make are done using the sum channel, e.g., range, Doppler, and angle. However, the angle measurement is limited in that the target could be anywhere within the beam width of the sum beam, and therefore the system can only assume that the beam pointing direction is the same as the ...
Regardless, radars that employ the technique are universally coherent, with a very stable radio frequency, and the pulse packets may also be used to make measurements of the Doppler shift (a velocity-dependent modification of the apparent radio frequency), especially when the PRFs are in the hundreds-of-kilohertz range. Radars exploiting ...