enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Markov chain - Wikipedia

    en.wikipedia.org/wiki/Markov_chain

    D. G. Champernowne built a Markov chain model of the distribution of income in 1953. [86] Herbert A. Simon and co-author Charles Bonini used a Markov chain model to derive a stationary Yule distribution of firm sizes. [87] Louis Bachelier was the first to observe that stock prices followed a random walk. [88]

  3. Markov model - Wikipedia

    en.wikipedia.org/wiki/Markov_model

    A Tolerant Markov model (TMM) is a probabilistic-algorithmic Markov chain model. [6] It assigns the probabilities according to a conditioning context that considers the last symbol, from the sequence to occur, as the most probable instead of the true occurring symbol. A TMM can model three different natures: substitutions, additions or deletions.

  4. Matrix analytic method - Wikipedia

    en.wikipedia.org/wiki/Matrix_analytic_method

    [1] [2] Such models are often described as M/G/1 type Markov chains because they can describe transitions in an M/G/1 queue. [3] [4] The method is a more complicated version of the matrix geometric method and is the classical solution method for M/G/1 chains. [5]

  5. Examples of Markov chains - Wikipedia

    en.wikipedia.org/wiki/Examples_of_Markov_chains

    A game of snakes and ladders or any other game whose moves are determined entirely by dice is a Markov chain, indeed, an absorbing Markov chain. This is in contrast to card games such as blackjack, where the cards represent a 'memory' of the past moves. To see the difference, consider the probability for a certain event in the game.

  6. Markov chain Monte Carlo - Wikipedia

    en.wikipedia.org/wiki/Markov_chain_Monte_Carlo

    In statistics, Markov chain Monte Carlo (MCMC) is a class of algorithms used to draw samples from a probability distribution.Given a probability distribution, one can construct a Markov chain whose elements' distribution approximates it – that is, the Markov chain's equilibrium distribution matches the target distribution.

  7. Mean-field particle methods - Wikipedia

    en.wikipedia.org/wiki/Mean-field_particle_methods

    If () = is the unit function and =, the interaction between the particle vanishes and the particle model reduces to a sequence of independent copies of the Markov chain . When ϵ = 0 {\displaystyle \epsilon =0} the mean field particle model described above reduces to a simple mutation-selection genetic algorithm with fitness function G and ...

  8. Markov decision process - Wikipedia

    en.wikipedia.org/wiki/Markov_decision_process

    The "Markov" in "Markov decision process" refers to the underlying structure of state transitions that still follow the Markov property. The process is called a "decision process" because it involves making decisions that influence these state transitions, extending the concept of a Markov chain into the realm of decision-making under uncertainty.

  9. Markov Chains and Mixing Times - Wikipedia

    en.wikipedia.org/wiki/Markov_Chains_and_Mixing_Times

    The mixing time of a Markov chain is the number of steps needed for this convergence to happen, to a suitable degree of accuracy. A family of Markov chains is said to be rapidly mixing if the mixing time is a polynomial function of some size parameter of the Markov chain, and slowly mixing otherwise. This book is about finite Markov chains ...

  1. Related searches markov chain model in excel tutorial video on youtube free english movies based on true stories

    markov chain examplesmarkov chain rows
    what is markov modelmarkov chain game
    markov chain functionmarkov chain biology
    markov chain wikimarkov chain chemistry