Search results
Results from the WOW.Com Content Network
Since the empty set has no member when it is considered as a subset of any ordered set, every member of that set will be an upper bound and lower bound for the empty set. For example, when considered as a subset of the real numbers, with its usual ordering, represented by the real number line, every real number is both an upper and lower bound ...
In set theory, the empty set, that is, the set with zero elements, denoted "{}" or "∅", may also be called null set. [3] [5] In measure theory, a null set is a (possibly nonempty) set with zero measure. A null space of a mapping is the part of the domain that is mapped into the null element of the image (the inverse image of the null element).
For example, the initial object in any concrete category with free objects will be the free object generated by the empty set (since the free functor, being left adjoint to the forgetful functor to Set, preserves colimits). Initial and terminal objects may also be characterized in terms of universal properties and adjoint functors.
Furthermore, one sometimes considers set theories in which there are no infinite sets, and then the axiom of empty set may still be required. However, any axiom of set theory or logic that implies the existence of any set will imply the existence of the empty set, if one has the axiom schema of separation. This is true, since the empty set is a ...
Common notations for the empty set include "{}", "∅", and "". The latter two symbols were introduced by the Bourbaki group (specifically André Weil) in 1939, inspired by the letter Ø in the Danish and Norwegian alphabets (and not related in any way to the Greek letter Φ). [2] Empty sets are used in set operations. For example: = {,,,,}
Although the empty set has Lebesgue measure zero, there are also non-empty sets which are null. For example, any non-empty countable set of real numbers has Lebesgue measure zero and therefore is null. More generally, on a given measure space = (,,) a null set is a set such that () =
The whole point of Russell's paradox is that the answer "such a set does not exist" means the definition of the notion of set within a given theory is unsatisfactory. Note the difference between the statements "such a set does not exist" and "it is an empty set". It is like the difference between saying "There is no bucket" and saying "The ...
If one considers on the topology in which the only open sets are the empty set and itself, then ([,]) is the empty set. These examples show that the interior of a set depends upon the topology of the underlying space.