Search results
Results from the WOW.Com Content Network
A simplified version of the definition is: The k v factor of a valve indicates "The water flow in m 3 /h, at a pressure drop across the valve of 1 kgf/cm 2 when the valve is completely open. The complete definition also says that the flow medium must have a density of 1000 kg/m 3 and a kinematic viscosity of 10 −6 m 2 /s , e.g. water.
The valve is next opened by moving it to the right, allowing the clear space in the middle of the valve to align with the channel in the cylinder above it. Piston valves are one form of valve used to control the flow of steam within a steam engine or locomotive .
The above equations calculate the steady state mass flow rate for the pressure and temperature existing in the upstream pressure source. If the gas is being released from a closed high-pressure vessel, the above steady state equations may be used to approximate the initial mass flow rate. Subsequently, the mass flow rate decreases during the ...
The valve stem D moves up to open the valve discs C. James Watt was using poppet valves to control the flow of steam into the cylinders of his beam engines in the 1770s. A sectional illustration of Watt's beam engine of 1774 using the device is found in Thurston 1878:98, [ 13 ] and Lardner (1840) provides an illustrated description of Watt's ...
The most common final control element in the process control industries is the control valve. The control valve manipulates a flowing fluid, such as gas, steam, water, or chemical compounds, to compensate for the load disturbance and keep the regulated process variable as close as possible to the desired set point. [1]
A control valve is a valve used to control fluid flow by varying the size of the flow passage as directed by a signal from a controller. [1] This enables the direct control of flow rate and the consequential control of process quantities such as pressure, temperature, and liquid level.
A valve stem is a self-contained valve that opens to admit gas to a chamber (such as air to inflate a tire), [1] and is then automatically closed and kept sealed by the pressure in the chamber, or a spring, [2] [3] or both, to prevent the gas from escaping.
The Darcy-Weisbach equation, combined with the Moody chart for calculating head losses in pipes, is traditionally attributed to Henry Darcy, Julius Weisbach, and Lewis Ferry Moody. However, the development of these formulas and charts also involved other scientists and engineers over its historical development.