Search results
Results from the WOW.Com Content Network
Example of a ballistic table for a given 7.62×51mm NATO load. Bullet drop and wind drift are shown both in mrad and MOA.. A ballistic table or ballistic chart, also known as the data of previous engagements (DOPE) chart, is a reference data chart used in long-range shooting to predict the trajectory of a projectile and compensate for physical effects of gravity and wind drift, in order to ...
Another attempt at building a ballistic calculator is the model presented in 1980 by Dr. Arthur J. Pejsa. [18] Dr. Pejsa claims on his website that his method was consistently capable of predicting (supersonic) rifle bullet trajectories within 2.5 mm (0.1 in) and bullet velocities within 0.3 m/s (1 ft/s) out to 914 m (1,000 yd) in theory. [19]
Also, the newer methodology proposed by Dr. Arthur Pejsa and the use of the G7 model used by Mr. Bryan Litz, ballistic engineer for Berger Bullets, LLC for calculating boat tailed spitzer rifle bullet trajectories and 6 Dof model based software have improved the prediction of flat-fire trajectories. [9] [55] [56]
Figure 2: Illustration of a Rifle Showing Line of Sight and Bore Angle. This relationship between the LOS to the target and the bore angle is determined through a process called "zeroing." The bore angle is set to ensure that a bullet on a parabolic trajectory will intersect the LOS to the target at a specific range.
A guide to the recoil from the cartridge, and an indicator of bullet penetration potential. The .30-06 Springfield (at 2.064 lbf-s) is considered the upper limit for tolerable recoil for inexperienced rifle shooters. [2] Chg: Propellant charge, in grains; Dia: Bullet diameter, in inches; BC: Ballistic coefficient, G1 model; L: Case length (mm)
In January 2009 the Finnish ammunition manufacturer Lapua published Doppler radar tests derived drag coefficient data for most of their rifle projectiles. [1] [2] The predictive capabilities of the custom mode are based on actual bullet flight data derived from Doppler radar test sessions. With this data engineers can create algorithms that ...
Miller twist rule is a mathematical formula derived by American physical chemist and historian of science Donald G. Miller (1927-2012) to determine the rate of twist to apply to a given bullet to provide optimum stability using a rifled barrel. [1]
For handgun cartridges, with heavy bullets and light powder charges (a 9×19mm, for example, might use 5 grains (320 mg) of powder, and a 115 grains (7.5 g) bullet), the powder recoil is not a significant force; for a rifle cartridge (a .22-250 Remington, using 40 grains (2.6 g) of powder and a 40 grains (2.6 g) bullet), the powder can be the ...