Search results
Results from the WOW.Com Content Network
Not adding the immediately preceding numbers. The Padovan sequence and Perrin numbers have P(n) = P(n − 2) + P(n − 3). Generating the next number by adding 3 numbers (tribonacci numbers), 4 numbers (tetranacci numbers), or more. The resulting sequences are known as n-Step Fibonacci numbers. [67]
The usual Fibonacci numbers are a Fibonacci sequence of order 2. The cases n = 3 {\displaystyle n=3} and n = 4 {\displaystyle n=4} have been thoroughly investigated. The number of compositions of nonnegative integers into parts that are at most n {\displaystyle n} is a Fibonacci sequence of order n {\displaystyle n} .
Plot of the first 10,000 Pisano periods. In number theory, the nth Pisano period, written as π (n), is the period with which the sequence of Fibonacci numbers taken modulo n repeats.
From a group and a field (or more generally a ring), the group ring [] is defined as the set of all finite formal -linear combinations of elements of − that is, an element of [] is of the form =, where = for all but finitely many so that the linear combination is finite.
The list on the right shows the numbers 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377 (the Fibonacci sequence). The 2, 8, and 9 resemble Arabic numerals more than Eastern Arabic numerals or Indian numerals .
In the Fibonacci sequence, each number is the sum of the previous two numbers. Fibonacci omitted the "0" and first "1" included today and began the sequence with 1, 2, 3, ... . He carried the calculation up to the thirteenth place, the value 233, though another manuscript carries it to the next place, the value 377.
For n = 1, 2, 3 it is clearly true (as these are Fibonacci numbers), for n = 4 we have 4 = 3 + 1. If n is a Fibonacci number then there is nothing to prove. Otherwise there exists j such that F j < n < F j + 1 . Now suppose each positive integer a < n has a Zeckendorf representation (induction hypothesis) and consider b = n − F j . Since b ...
1, 1, 2, 2, 4, 2, 6, 4, 6, 4, ... φ(n) is the number of positive integers not greater than n that are coprime with n. A000010: Lucas numbers L(n) 2, 1, 3, 4, 7, 11, 18, 29, 47, 76, ... L(n) = L(n − 1) + L(n − 2) for n ≥ 2, with L(0) = 2 and L(1) = 1. A000032: Prime numbers p n: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, ... The prime numbers p ...