enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mittag-Leffler's theorem - Wikipedia

    en.wikipedia.org/wiki/Mittag-Leffler's_theorem

    One possible proof outline is as follows. If is finite, it suffices to take () = ().If is not finite, consider the finite sum () = where is a finite subset of .While the () may not converge as F approaches E, one may subtract well-chosen rational functions with poles outside of (provided by Runge's theorem) without changing the principal parts of the () and in such a way that convergence is ...

  3. Law of cotangents - Wikipedia

    en.wikipedia.org/wiki/Law_of_cotangents

    In trigonometry, the law of cotangents is a relationship among the lengths of the sides of a triangle and the cotangents of the halves of the three angles. [1] [2]Just as three quantities whose equality is expressed by the law of sines are equal to the diameter of the circumscribed circle of the triangle (or to its reciprocal, depending on how the law is expressed), so also the law of ...

  4. Trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_functions

    Various features unique to the complex functions can be seen from the graph; for example, the sine and cosine functions can be seen to be unbounded as the imaginary part of becomes larger (since the color white represents infinity), and the fact that the functions contain simple zeros or poles is apparent from the fact that the hue cycles ...

  5. Spherical trigonometry - Wikipedia

    en.wikipedia.org/wiki/Spherical_trigonometry

    The cotangent, or four-part, formulae relate two sides and two angles forming four consecutive parts around the triangle, for example (aCbA) or BaCb). In such a set there are inner and outer parts: for example in the set (BaCb) the inner angle is C, the inner side is a, the outer angle is B, the outer side is b.

  6. Mnemonics in trigonometry - Wikipedia

    en.wikipedia.org/wiki/Mnemonics_in_trigonometry

    Quadrant 3 (angles from 180 to 270 degrees, or π to 3π/2 radians): Tangent and cotangent functions are positive in this quadrant. Quadrant 4 (angles from 270 to 360 degrees, or 3π/2 to 2π radians): Cosine and secant functions are positive in this quadrant. Other mnemonics include: All Stations To Central [6] All Silly Tom Cats [6]

  7. Inverse trigonometric functions - Wikipedia

    en.wikipedia.org/.../Inverse_trigonometric_functions

    Specifically, they are the inverses of the sine, cosine, tangent, cotangent, secant, and cosecant functions, [4] and are used to obtain an angle from any of the angle's trigonometric ratios. Inverse trigonometric functions are widely used in engineering , navigation , physics , and geometry .

  8. Cotangent bundle - Wikipedia

    en.wikipedia.org/wiki/Cotangent_bundle

    For example, as a result X is always an orientable manifold (the tangent bundle TX is an orientable vector bundle). A special set of coordinates can be defined on the cotangent bundle; these are called the canonical coordinates .

  9. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    A formula for computing the trigonometric identities for the one-third angle exists, but it requires finding the zeroes of the cubic equation 4x 3 − 3x + d = 0, where is the value of the cosine function at the one-third angle and d is the known value of the cosine function at the full angle.