Search results
Results from the WOW.Com Content Network
Atmospheric thermodynamics is the study of heat-to-work transformations (and their reverse) that take place in the Earth's atmosphere and manifest as weather or climate. . Atmospheric thermodynamics use the laws of classical thermodynamics, to describe and explain such phenomena as the properties of moist air, the formation of clouds, atmospheric convection, boundary layer meteorology, and ...
The atmospheric circulation can be viewed as a heat engine driven by the Sun's energy and whose energy sink, ultimately, is the blackness of space. The work produced by that engine causes the motion of the masses of air, and in that process it redistributes the energy absorbed by the Earth's surface near the tropics to the latitudes nearer the ...
Any atmospheric circulation system, whether it is a small-scale weather system or a large-scale zonal wind system, is maintained by the supply of kinetic energy.The development of such a system requires either a transformation of some other form of energy into kinetic energy, or the conversion of the kinetic energy of another system into that of the developing system. [3]
The flow of energy in an ecosystem is an open system; the Sun constantly gives the planet energy in the form of light while it is eventually used and lost in the form of heat throughout the trophic levels of a food web. Carbon is used to make carbohydrates, fats, and proteins, the major sources of food energy. These compounds are oxidized to ...
While there are many abiotic sources and sinks for O 2, the presence of the profuse concentration of free oxygen in modern Earth's atmosphere and ocean is attributed to O 2 production from the biological process of oxygenic photosynthesis in conjunction with a biological sink known as the biological pump and a geologic process of carbon burial involving plate tectonics.
The two main processes that contribute to ecosystem respiration are photosynthesis and cellular respiration. Photosynthesis uses carbon-dioxide and water, in the presence of sunlight to produce glucose and oxygen whereas cellular respiration uses glucose and oxygen to produce carbon-dioxide, water, and energy.
The study of Earth's atmosphere and its processes is called atmospheric science (aerology), and includes multiple subfields, such as climatology and atmospheric physics. Early pioneers in the field include Léon Teisserenc de Bort and Richard Assmann. [4] The study of historic atmosphere is called paleoclimatology.
Biological processes also lead to ocean-atmosphere carbon exchange. Carbon dioxide equilibrates between the atmosphere and the ocean's surface layers. As autotrophs add or subtract carbon dioxide from the water through photosynthesis or respiration , they modify this balance, allowing the water to absorb more carbon dioxide or causing it to ...