enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Terminal velocity - Wikipedia

    en.wikipedia.org/wiki/Terminal_velocity

    Terminal velocity is the maximum speed attainable by an object as it falls through a fluid (air is the most common example). It is reached when the sum of the drag force ( F d ) and the buoyancy is equal to the downward force of gravity ( F G ) acting on the object.

  3. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    Based on wind resistance, for example, the terminal velocity of a skydiver in a belly-to-earth (i.e., face down) free-fall position is about 195 km/h (122 mph or 54 m/s). [3] This velocity is the asymptotic limiting value of the acceleration process, because the effective forces on the body balance each other more and more closely as the ...

  4. File:Graph of velocity versus time of a skydiver reaching a ...

    en.wikipedia.org/wiki/File:Graph_of_velocity...

    You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.

  5. Speed skydiving - Wikipedia

    en.wikipedia.org/wiki/Speed_skydiving

    The speed, achieved by the human body in free fall, is a function of several factors; including the body's mass, orientation, and skin area and texture. [1] In stable, belly-to-earth position, terminal velocity is about 200 km/h (120 mph). Stable freefall head down position has a terminal speed of 240–290 km/h (around 150–180 mph).

  6. Torricelli's equation - Wikipedia

    en.wikipedia.org/wiki/Torricelli's_equation

    In physics, Torricelli's equation, or Torricelli's formula, is an equation created by Evangelista Torricelli to find the final velocity of a moving object with constant acceleration along an axis (for example, the x axis) without having a known time interval. The equation itself is: [1] = + where

  7. Free fall - Wikipedia

    en.wikipedia.org/wiki/Free_fall

    The terminal velocity depends on many factors including mass, drag coefficient, and relative surface area and will only be achieved if the fall is from sufficient altitude. A typical skydiver in a spread-eagle position will reach terminal velocity after about 12 seconds, during which time they will have fallen around 450 m (1,500 ft). [4]

  8. Standard step method - Wikipedia

    en.wikipedia.org/wiki/Standard_Step_Method

    This can only occur in a smooth channel that does not experience any changes in flow, channel geometry, roughness or channel slope. During uniform flow, the flow depth is known as normal depth (yn). This depth is analogous to the terminal velocity of an object in free fall, where gravity and frictional forces are in balance (Moglen, 2013). [3]

  9. Hadamard–Rybczynski equation - Wikipedia

    en.wikipedia.org/wiki/Hadamard–Rybczynski_equation

    the resultant velocity of the bubble. The Hadamard–Rybczynski equation can be derived from the Navier–Stokes equations by considering only the buoyancy force and drag force acting on the moving bubble. The surface tension force and inertia force of the bubble are neglected. [1]