enow.com Web Search

  1. Ads

    related to: using excel to cluster data

Search results

  1. Results from the WOW.Com Content Network
  2. Determining the number of clusters in a data set - Wikipedia

    en.wikipedia.org/wiki/Determining_the_number_of...

    The average silhouette of the data is another useful criterion for assessing the natural number of clusters. The silhouette of a data instance is a measure of how closely it is matched to data within its cluster and how loosely it is matched to data of the neighboring cluster, i.e., the cluster whose average distance from the datum is lowest. [8]

  3. Cluster analysis - Wikipedia

    en.wikipedia.org/wiki/Cluster_analysis

    Educational data mining Cluster analysis is for example used to identify groups of schools or students with similar properties. Typologies From poll data, projects such as those undertaken by the Pew Research Center use cluster analysis to discern typologies of opinions, habits, and demographics that may be useful in politics and marketing.

  4. Jenks natural breaks optimization - Wikipedia

    en.wikipedia.org/wiki/Jenks_natural_breaks...

    The Jenks optimization method, also called the Jenks natural breaks classification method, is a data clustering method designed to determine the best arrangement of values into different classes. This is done by seeking to minimize each class's average deviation from the class mean, while maximizing each class's deviation from the means of the ...

  5. Elbow method (clustering) - Wikipedia

    en.wikipedia.org/wiki/Elbow_method_(clustering)

    Using the "elbow" or "knee of a curve" as a cutoff point is a common heuristic in mathematical optimization to choose a point where diminishing returns are no longer worth the additional cost. In clustering, this means one should choose a number of clusters so that adding another cluster doesn't give much better modeling of the data.

  6. Hierarchical clustering - Wikipedia

    en.wikipedia.org/wiki/Hierarchical_clustering

    The standard algorithm for hierarchical agglomerative clustering (HAC) has a time complexity of () and requires () memory, which makes it too slow for even medium data sets. . However, for some special cases, optimal efficient agglomerative methods (of complexity ()) are known: SLINK [2] for single-linkage and CLINK [3] for complete-linkage clusteri

  7. Automatic clustering algorithms - Wikipedia

    en.wikipedia.org/wiki/Automatic_Clustering...

    BIRCH (balanced iterative reducing and clustering using hierarchies) is an algorithm used to perform connectivity-based clustering for large data-sets. [7] It is regarded as one of the fastest clustering algorithms, but it is limited because it requires the number of clusters as an input.

  8. Model-based clustering - Wikipedia

    en.wikipedia.org/wiki/Model-based_clustering

    Model-based clustering was first invented in 1950 by Paul Lazarsfeld for clustering multivariate discrete data, in the form of the latent class model. [ 41 ] In 1959, Lazarsfeld gave a lecture on latent structure analysis at the University of California-Berkeley, where John H. Wolfe was an M.A. student.

  9. Data analysis for fraud detection - Wikipedia

    en.wikipedia.org/wiki/Data_analysis_for_fraud...

    Fraud detection is a knowledge-intensive activity. The main AI techniques used for fraud detection include: . Data mining to classify, cluster, and segment the data and automatically find associations and rules in the data that may signify interesting patterns, including those related to fraud.

  1. Ads

    related to: using excel to cluster data