enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Irreversible process - Wikipedia

    en.wikipedia.org/wiki/Irreversible_process

    An irreversible process increases the total entropy of the system and its surroundings. The second law of thermodynamics can be used to determine whether a hypothetical process is reversible or not. Intuitively, a process is reversible if there is no dissipation. For example, Joule expansion is irreversible because initially the system is not ...

  3. Joule expansion - Wikipedia

    en.wikipedia.org/wiki/Joule_expansion

    Internal energy consists of internal kinetic energy (due to the motion of the molecules) and internal potential energy (due to intermolecular forces). When the molecular motion is random, temperature is the measure of the internal kinetic energy. In this case, the internal kinetic energy is called heat.

  4. Second law of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Second_law_of_thermodynamics

    Every process occurring in nature proceeds in the sense in which the sum of the entropies of all bodies taking part in the process is increased. In the limit, i.e. for reversible processes, the sum of the entropies remains unchanged. [44] [45] [46] Rather like Planck's statement is that of George Uhlenbeck and G. W. Ford for irreversible phenomena.

  5. Non-equilibrium thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Non-equilibrium_thermodynamics

    Extended irreversible thermodynamics is a branch of non-equilibrium thermodynamics that goes outside the restriction to the local equilibrium hypothesis. The space of state variables is enlarged by including the fluxes of mass, momentum and energy and eventually higher order fluxes. The formalism is well-suited for describing high-frequency ...

  6. First law of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/First_law_of_thermodynamics

    The first law of thermodynamics is a formulation of the law of conservation of energy in the context of thermodynamic processes.The law distinguishes two principal forms of energy transfer, heat and thermodynamic work, that modify a thermodynamic system containing a constant amount of matter.

  7. Entropy (classical thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(classical...

    It is in this sense that entropy is a measure of the energy in a system that cannot be used to do work. An irreversible process degrades the performance of a thermodynamic system, designed to do work or produce cooling, and results in entropy production. The entropy generation during a reversible process is zero. Thus entropy production is a ...

  8. Clausius theorem - Wikipedia

    en.wikipedia.org/wiki/Clausius_theorem

    If the amount of energy added by heating can be measured during the process, and the temperature can be measured during the process, then the Clausius inequality can be used to determine whether the process is reversible or irreversible by carrying out the integration in the Clausius inequality.

  9. Isentropic process - Wikipedia

    en.wikipedia.org/wiki/Isentropic_process

    The equal sign refers to a reversible process, which is an imagined idealized theoretical limit, never actually occurring in physical reality, with essentially equal temperatures of system and surroundings. [10] [11] For an isentropic process, if also reversible, there is no transfer of energy as heat because the process is adiabatic; δQ = 0 ...