Search results
Results from the WOW.Com Content Network
In physics, there are equations in every field to relate physical quantities to each other and perform calculations. Entire handbooks of equations can only summarize most of the full subject, else are highly specialized within a certain field. Physics is derived of formulae only.
The definitions for monopoles are of theoretical interest, although real magnetic dipoles can be described using pole strengths. There are two possible units for monopole strength, Wb (Weber) and A m (Ampere metre). Dimensional analysis shows that magnetic charges relate by q m (Wb) = μ 0 q m (Am).
On a benzene ring, the Hammett equation classifies a methoxy substituent at the para position as an electron-donating group, but as an electron-withdrawing group if at the meta position. At the ortho position, steric effects are likely to cause a significant alteration in the Hammett equation prediction which otherwise follows the same trend as ...
Here g is as usual the determinant of the matrix representing the metric tensor, g αβ. A small computation that uses the symmetry of the Christoffel symbols (i.e., the torsion-freeness of the Levi-Civita connection) and the covariant constantness of the Hodge star operator then shows that in this coordinate neighborhood we have:
The multipole expansion circumvents this difficulty by expanding not E or B, but r ⋅ E or r ⋅ B into spherical harmonics. These expansions still solve the original Helmholtz equations for E and B because for a divergence-free field F, ∇ 2 (r ⋅ F) = r ⋅ (∇ 2 F). The resulting expressions for a generic electromagnetic field are:
When charged particles move in electric and magnetic fields the following two laws apply: Lorentz force law: = (+),; Newton's second law of motion: = =; where F is the force applied to the ion, m is the mass of the particle, a is the acceleration, Q is the electric charge, E is the electric field, and v × B is the cross product of the ion's velocity and the magnetic flux density.
Classical mechanics is the branch of physics used to describe the motion of macroscopic objects. [1] It is the most familiar of the theories of physics. The concepts it covers, such as mass, acceleration, and force, are commonly used and known. [2]
The integral version of Gauss's equation can thus be rewritten as = Since Ω is arbitrary (e.g. an arbitrary small ball with arbitrary center), this is satisfied if and only if the integrand is zero everywhere. This is the differential equations formulation of Gauss equation up to a trivial rearrangement.