Search results
Results from the WOW.Com Content Network
The concept is the same as for a large mass balance, but it is performed in the context of a limiting system (for example, one can consider the limiting case in time or, more commonly, volume). A differential mass balance is used to generate differential equations that can provide an effective tool for modelling and understanding the target system.
Stoichiometry is not only used to balance chemical equations but also used in conversions, i.e., converting from grams to moles using molar mass as the conversion factor, or from grams to milliliters using density. For example, to find the amount of NaCl (sodium chloride) in 2.00 g, one would do the following:
The program mediates between two terminological concepts: The calculations are performed in the "scientific realm" of thermodynamics (activities, speciation, log K values, ionic strength, etc.). Then, the output is translated into the "language" of common use: molar and mass concentrations, alkalinity, buffer capacities, water hardness ...
In chemistry, the molar mass (M) (sometimes called molecular weight or formula weight, but see related quantities for usage) of a chemical compound is defined as the ratio between the mass and the amount of substance (measured in moles) of any sample of the compound. [1] The molar mass is a bulk, not molecular, property of a substance.
The molar mass constant is important in writing dimensionally correct equations. [4] While one may informally say "the molar mass M of an element is the same as its atomic weight A", the atomic weight (relative atomic mass) A is a dimensionless quantity, whereas the molar mass M has the units of mass per mole.
In chemistry and physics, the dimensionless mixing ratio is the abundance of one component of a mixture relative to that of all other components. The term can refer either to mole ratio (see concentration ) or mass ratio (see stoichiometry ).
There are as many mass-balance equations as there are reagents, A, B..., so if the equilibrium constant values are known, there are n mass-balance equations in n unknowns, [A], [B]..., the so-called free reagent concentrations. Solution of these equations gives all the information needed to calculate the concentrations of all the species. [16]
The theoretical molar yield is 2.0 mol (the molar amount of the limiting compound, acetic acid). The molar yield of the product is calculated from its weight (132 g ÷ 88 g/mol = 1.5 mol). The % yield is calculated from the actual molar yield and the theoretical molar yield (1.5 mol ÷ 2.0 mol × 100% = 75%). [citation needed]