Search results
Results from the WOW.Com Content Network
The breadth-first-search algorithm is a way to explore the vertices of a graph layer by layer. It is a basic algorithm in graph theory which can be used as a part of other graph algorithms. For instance, BFS is used by Dinic's algorithm to find maximum flow in a graph.
Beam search uses breadth-first search to build its search tree. At each level of the tree, it generates all successors of the states at the current level, sorting them in increasing order of heuristic cost. [2] However, it only stores a predetermined number, , of best states at each level (called the beam width). Only those states are expanded ...
In computer science, tree traversal (also known as tree search and walking the tree) is a form of graph traversal and refers to the process of visiting (e.g. retrieving, updating, or deleting) each node in a tree data structure, exactly once. Such traversals are classified by the order in which the nodes are visited.
A breadth-first search (BFS) is another technique for traversing a finite graph. BFS visits the sibling vertices before visiting the child vertices, and a queue is used in the search process. This algorithm is often used to find the shortest path from one vertex to another.
Every tree with only countably many vertices is a planar graph. Every connected graph G admits a spanning tree, which is a tree that contains every vertex of G and whose edges are edges of G. More specific types spanning trees, existing in every connected finite graph, include depth-first search trees and breadth-first search trees.
The algorithm is called lexicographic breadth-first search because the order it produces is an ordering that could also have been produced by a breadth-first search, and because if the ordering is used to index the rows and columns of an adjacency matrix of a graph then the algorithm sorts the rows and columns into lexicographical order.
Examples of the latter include the exhaustive methods such as depth-first search and breadth-first search, as well as various heuristic-based search tree pruning methods such as backtracking and branch and bound. Unlike general metaheuristics, which at best work only in a probabilistic sense, many of these tree-search methods are guaranteed to ...
Any breadth-first search tree has d(d − 1) i−1 vertices in its i-th level for i ≥ 1. Let G be any graph with maximum degree d and diameter k, and consider the tree formed by breadth-first search starting from any vertex v. This tree has 1 vertex at level 0 (v itself), and at most d vertices at level 1 (the neighbors of v).