Search results
Results from the WOW.Com Content Network
Electroosmotic flow is caused by the Coulomb force induced by an electric field on net mobile electric charge in a solution. Because the chemical equilibrium between a solid surface and an electrolyte solution typically leads to the interface acquiring a net fixed electrical charge, a layer of mobile ions, known as an electrical double layer or Debye layer, forms in the region near the interface.
When using the notation for dynamic viscosity, for the liquid-solid contact angle, for surface tension, for the fluid density, t for time, and r for the cross-sectional radius of the capillary and x for the distance the fluid has advanced, the Bosanquet equation of motion is [2]
This is electrocapillary flow, an example of electrocapillarity. Electrocapillary phenomena are phenomena related to changes in the surface free energy (or interfacial tension ) of charged fluid interfaces, for example that of the dropping mercury electrode (DME), or in principle, any electrode, as the electrode potential changes or the ...
Electroosmosis is the motion of liquid induced by an applied potential across a porous material, capillary tube, membrane or any other fluid conduit. Electroosmotic flow is caused by the Coulomb force induced by an electric field on net mobile electric charge in a solution.
Flow through the pores in an oil reservoir has capillary number values in the order of 10 −6, whereas flow of oil through an oil well drill pipe has a capillary number in the order of unity. [ 4 ] The capillary number plays a role in the dynamics of capillary flow ; in particular, it governs the dynamic contact angle of a flowing droplet at ...
Flux F through a surface, dS is the differential vector area element, n is the unit normal to the surface. Left: No flux passes in the surface, the maximum amount flows normal to the surface.
Related: 300 Trivia Questions and Answers to Jumpstart Your Fun Game Night What Is Today's Strands Hint for the Theme: "Board Certified"? Today's Strands game revolves around a craft that involves ...
The equation is derived for capillary flow in a cylindrical tube in the absence of a gravitational field, but is sufficiently accurate in many cases when the capillary force is still significantly greater than the gravitational force. In his paper from 1921 Washburn applies Poiseuille's Law for fluid motion in a circular tube.