Ad
related to: the power theorems in geometry
Search results
Results from the WOW.Com Content Network
Secant-, chord-theorem. For the intersecting secants theorem and chord theorem the power of a point plays the role of an invariant: . Intersecting secants theorem: For a point outside a circle and the intersection points , of a secant line with the following statement is true: | | | | = (), hence the product is independent of line .
In Euclidean geometry, the intersecting chords theorem, or just the chord theorem, is a statement that describes a relation of the four line segments created by two intersecting chords within a circle. It states that the products of the lengths of the line segments on each chord are equal. It is Proposition 35 of Book 3 of Euclid's Elements.
Descartes's theorem (plane geometry) Descartes's theorem on total angular defect ; Diaconescu's theorem (mathematical logic) Diller–Dress theorem (field theory) Dilworth's theorem (combinatorics, order theory) Dinostratus' theorem (geometry, analysis) Dimension theorem for vector spaces (vector spaces, linear algebra) Dini's theorem
As a consequence of the theorem, opposite angles of cyclic quadrilaterals sum to 180°; conversely, any quadrilateral for which this is true can be inscribed in a circle. As another example, the inscribed angle theorem is the basis for several theorems related to the power of a point with respect to a circle. Further, it allows one to prove ...
Pages in category "Theorems in geometry" The following 47 pages are in this category, out of 47 total. This list may not reflect recent changes. 0–9. 2π theorem; A.
By the secant-tangent theorem, the square of this tangent length equals the power of the point P in the circle C. This power equals the product of distances from P to any two intersection points of the circle with a secant line passing through P. The angle θ between a chord and a tangent is half the arc belonging to the chord.
In algebra and algebraic geometry, given a commutative Noetherian ring and an ideal in it, the n-th symbolic power of is the ideal = (/) ()where is the localization of at , we set : is the canonical map from a ring to its localization, and the intersection runs through all of the associated primes of /.
A power diagram of four circles. In computational geometry, a power diagram, also called a Laguerre–Voronoi diagram, Dirichlet cell complex, radical Voronoi tesselation or a sectional Dirichlet tesselation, is a partition of the Euclidean plane into polygonal cells defined from a set of circles.
Ad
related to: the power theorems in geometry