Search results
Results from the WOW.Com Content Network
Diagram of a chemical synaptic connection. In the nervous system, a synapse [1] is a structure that allows a neuron (or nerve cell) to pass an electrical or chemical signal to another neuron or a target effector cell. Synapses can be classified as either chemical or electrical, depending on the mechanism of signal transmission between neurons.
Neurons form complex biological neural networks through which nerve impulses (action potentials) travel. Neurons do not touch each other (except in the case of an electrical synapse through a gap junction); instead, neurons interact at close contact points called synapses. A neuron transports its information by way of an action potential.
The synaptic cleft—also called synaptic gap—is a gap between the pre- and postsynaptic cells that is about 20 nm (0.02 μ) wide. [12] The small volume of the cleft allows neurotransmitter concentration to be raised and lowered rapidly.
These are patterns of synaptic activity that produce a long-lasting increase in signal transmission between two neurons. [2] The opposite of LTP is long-term depression, which produces a long-lasting decrease in synaptic strength. It is one of several phenomena underlying synaptic plasticity, the ability of chemical synapses to change their ...
The active zone or synaptic active zone is a term first used by Couteaux and Pecot-Dechavassinein in 1970 to define the site of neurotransmitter release. Two neurons make near contact through structures called synapses allowing them to communicate with each other.
Without the need for receptors to recognize chemical messengers, signal transmission at electrical synapses is more rapid than that which occurs across chemical synapses, the predominant kind of junctions between neurons. Chemical transmission exhibits synaptic delay—recordings from squid synapses and neuromuscular junctions of the frog ...
This bidirectional communication between astrocytes and neurons add complexity to brain signaling, with implications for brain function and neurological disorders. [10] [11] Enzyme degradation – proteins called enzymes break the neurotransmitters down. Reuptake – neurotransmitters are reabsorbed into the pre-synaptic neuron.
Synaptic vesicle components in the presynaptic neuron are initially trafficked to the synapse using members of the kinesin motor family. In C. elegans the major motor for synaptic vesicles is UNC-104. [11] There is also evidence that other proteins such as UNC-16/Sunday Driver regulate the use of motors for transport of synaptic vesicles. [12] 2.