enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Word equation - Wikipedia

    en.wikipedia.org/wiki/Word_equation

    A word equation is a formal equality:= = between a pair of words and , each over an alphabet comprising both constants (c.f. ) and unknowns (c.f. ). [1] An assignment h {\displaystyle h} of constant words to the unknowns of E {\displaystyle E} is said to solve E {\displaystyle E} if it maps both sides of E {\displaystyle E} to identical words.

  3. Genus (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Genus_(mathematics)

    In layman's terms, the genus is the number of "holes" an object has ("holes" interpreted in the sense of doughnut holes; a hollow sphere would be considered as having zero holes in this sense). [3] A torus has 1 such hole, while a sphere has 0. The green surface pictured above has 2 holes of the relevant sort. For instance:

  4. Combinatorics on words - Wikipedia

    en.wikipedia.org/wiki/Combinatorics_on_words

    For example, the word "encyclopedia" is a sequence of symbols in the English alphabet, a finite set of twenty-six letters. Since a word can be described as a sequence, other basic mathematical descriptions can be applied. The alphabet is a set, so as one would expect, the empty set is a subset. In other words, there exists a unique word of ...

  5. Word-representable graph - Wikipedia

    en.wikipedia.org/wiki/Word-representable_graph

    In the mathematical field of graph theory, a word-representable graph is a graph that can be characterized by a word (or sequence) whose entries alternate in a prescribed way. In particular, if the vertex set of the graph is V , one should be able to choose a word w over the alphabet V such that letters a and b alternate in w if and only if the ...

  6. Toroidal graph - Wikipedia

    en.wikipedia.org/wiki/Toroidal_graph

    A toroidal graph that cannot be embedded in a plane is said to have genus 1. The Heawood graph, the complete graph K 7 (and hence K 5 and K 6), the Petersen graph (and hence the complete bipartite graph K 3,3, since the Petersen graph contains a subdivision of it), one of the Blanuša snarks, [1] and all Möbius ladders are toroidal.

  7. Betti number - Wikipedia

    en.wikipedia.org/wiki/Betti_number

    b 1 is the number of one-dimensional or "circular" holes; b 2 is the number of two-dimensional "voids" or "cavities". Thus, for example, a torus has one connected surface component so b 0 = 1, two "circular" holes (one equatorial and one meridional) so b 1 = 2, and a single cavity enclosed within the surface so b 2 = 1.

  8. Betweenness centrality - Wikipedia

    en.wikipedia.org/wiki/Betweenness_centrality

    For every pair of vertices in a connected graph, there exists at least one shortest path between the vertices, that is, there exists at least one path such that either the number of edges that the path passes through (for unweighted graphs) or the sum of the weights of the edges (for weighted graphs) is minimized. The betweenness centrality for ...

  9. Spirograph - Wikipedia

    en.wikipedia.org/wiki/Spirograph

    Spirograph is a geometric drawing device that produces mathematical roulette curves of the variety technically known as hypotrochoids and epitrochoids.The well-known toy version was developed by British engineer Denys Fisher and first sold in 1965.