Search results
Results from the WOW.Com Content Network
Fluid-attenuated inversion recovery (FLAIR) is a magnetic resonance imaging sequence with an inversion recovery set to null fluids. For example, it can be used in brain imaging to suppress cerebrospinal fluid (CSF) effects on the image, so as to bring out the periventricular hyperintense lesions, such as multiple sclerosis (MS) plaques. [ 1 ]
Dawson's Fingers appearing on an MRI scan. Multiple sclerosis and other demyelinating diseases of the central nervous system (CNS) produce lesions (demyelinated areas in the CNS) and glial scars or scleroses. They present different shapes and histological findings according to the underlying condition that produces them.
Fluid-attenuated inversion recovery (FLAIR) [2] is an inversion-recovery pulse sequence used to nullify the signal from fluids. For example, it can be used in brain imaging to suppress cerebrospinal fluid so as to bring out periventricular hyperintense lesions, such as multiple sclerosis plaques.
The first MR images of a human brain were obtained in 1978 by two groups of researchers at EMI Laboratories led by Ian Robert Young and Hugh Clow. [1] In 1986, Charles L. Dumoulin and Howard R. Hart at General Electric developed MR angiography, [2] and Denis Le Bihan obtained the first images and later patented diffusion MRI. [3]
MRI scans showing hyperintensities. A hyperintensity or T2 hyperintensity is an area of high intensity on types of magnetic resonance imaging (MRI) scans of the brain of a human or of another mammal that reflect lesions produced largely by demyelination and axonal loss.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Donate
Over time, the MRI is excellent at showing rarefaction and cystic degeneration of the white matter as it is replaced by fluid. To show this change, displaying white matter as a high signal (T2-weighted), proton density, and Fluid attenuated inversion recovery (FLAIR) images are the best approach. T2-weighted images also displaying cerebrospinal ...
Some areas that appear normal under normal MRI look abnormal under special MRI, like magnetisation transfer MTR-MRI. These are called Normal Appearing White Matter (NAWM) and Normal Appearing Grey Matter (NAGM). The cause why the normal appearing areas appear in the brain is unknown, but seems clear that they appear mainly in the ventricles and ...