Search results
Results from the WOW.Com Content Network
The transverse temporal gyrus, also called Heschl's gyrus (/ ˈ h ɛ ʃ əl z ˈ dʒ aɪ r aɪ /) or Heschl's convolutions, is a gyrus found in the area of each primary auditory cortex buried within the lateral sulcus of the human brain, occupying Brodmann areas 41 and 42.
Coronal section of a human brain. BA41(red) and BA42(green) are auditory cortex. BA22(yellow) is Brodmann area 22, HF(blue) is hippocampal formation and pSTG is posterior part of superior temporal gyrus. The auditory cortex is the part of the temporal lobe that processes auditory information in humans and many other vertebrates.
Both pathways project in humans to the inferior frontal gyrus. The most established role of the auditory dorsal stream in primates is sound localization. In humans, the auditory dorsal stream in the left hemisphere is also responsible for speech repetition and articulation, phonological long-term encoding of word names, and verbal working memory.
The temporoparietal junction (TPJ) is an area of the brain where the temporal and parietal lobes meet, at the posterior end of the lateral sulcus (Sylvian fissure). The TPJ incorporates information from the thalamus and the limbic system as well as from the visual, auditory, and somatosensory systems.
The second, the angular gyrus , arches over the posterior end of the superior temporal sulcus, behind which it is continuous with the middle temporal gyrus. In males, the inferior parietal lobule is significantly more voluminous in the left hemisphere compared to the right.
Gyrification in the human brain. Gyrification is the process of forming the characteristic folds of the cerebral cortex. [1] The peak of such a fold is called a gyrus (pl. gyri), and its trough is called a sulcus (pl. sulci). The neurons of the cerebral cortex reside in a thin layer of gray matter, only 2–4 mm thick, at the surface of the ...
The impact of disrupted temporal coding on human auditory perception has been explored using physiologically inspired signal-processing tools. The reduction in neural synchrony has been simulated by jittering the phases of the multiple frequency components in speech, [ 187 ] although this has undesired effects in the spectral domain.
Deaf humans are thought to have a larger ratio of gray matter to white matter in certain auditory cortices, such as left and right Heschl's gyrus and Superior Temporal gyrus. [11] This heightened ratio is thought to exist due to less overall white matter in Heschl's gyrus and the Superior Temoral gyrus among deaf humans.